
Information Integration among

Heterogeneous and Autonomous

Applications

Ammar Benabdelkader

Copyright c©2002 by Ammar Benabdelkader.
All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without written permission from the author.

ISBN 90-5776-093-2
Febodruk Enschede.

Information Integration among

Heterogeneous and Autonomous

Applications

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus

prof. P. F. van der Heijden
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Aula der Universiteit
op Dinsdag 12 November 2002 te 10.00 uur

door

Ammar Benabdelkader

geboren te Bir El Arch, Sétif, Algeria

Promotiecommissie:

Promotor: Prof. dr. L.O. Hertzberger

Co-promotor: Dr. H. Afsarmanesh

Overige Leden:
Prof. dr. P.W. Adriaans
Prof. dr. R.J. Meijer
Prof. dr. A.P.J.M. Siebes
Prof. dr. L.M. Camarinha-Matos
Dr. ir. Paul W.P.J Grefen

Faculteit:
Natuurwetenschappen, Wiskunde & Informatica
Kruislaan 403
1098 SJ Amsterdam
Nederland

The research described in this thesis was partially supported by the European Commis-
sion under ESPRIT project-22186 Waternet, the HPCN MegaStore project, and the Dutch
ICES/KIS program under project-1544516 Virtual Laboratory.

Contents

Acknowledgments xii

1 Introduction 1
1.1 Major Requirements in terms of Information Management 3
1.2 Application Cases: an Overview . 4
1.3 Thesis Contribution . 7
1.4 Organization of the thesis . 8

2 Information Integration Approaches, Mechanisms, and Tools 11
2.1 Introduction . 11
2.2 A Taxonomy for Information Integration . 12

2.2.1 Distributed Systems . 14
2.2.2 Integrated Systems . 17

2.3 Further Classifications and Categorizations 28
2.4 Discussion . 29

3 WATERNET: Intelligent Supervision and Control in Heterogeneous and
Distributed Application 31
3.1 Introduction . 32
3.2 Water Environment and General application requirements 33

3.2.1 Water Network Structure and Management 35
3.3 Information Management Approach . 38

3.3.1 The Waternet Architecture . 38
3.3.2 Simple Scenario for Subsystems interaction 39

3.4 Distributed Information Management System (DIMS) 40
3.4.1 The PEER Federated Layer . 41
3.4.2 Schemas Management in WATERNET Using PEER 42

3.5 Extended Integration Approach . 45
3.5.1 Data Adapters Supporting Openness 47
3.5.2 The WATERNET System Implementation 48

3.6 Conclusion and Discussion . 48
3.6.1 Major Characteristics and Benefits of Federated Approach in Waternet 49
3.6.2 Contribution to GFI2S . 49

i

ii CONTENTS

4 MegaStore: Advanced Web Databases for Music Industry 51
4.1 Introduction . 51

4.1.1 E-Commerce Applications: Attempts and Aims 52
4.2 Problem Analysis and Required High Level

Architecture . 52
4.2.1 Database Design . 53
4.2.2 ODL Schema definition . 55

4.3 The MegaStore System Architecture . 57
4.3.1 The Internet-Shop Interface . 58
4.3.2 The Shop-in-a-Shop Interface . 58
4.3.3 Server Architecture Extension . 59

4.4 Music Audio and Video content . 60
4.4.1 Bandwidth and Encoding Algorithm 60
4.4.2 Data Volume Estimation . 61

4.5 Music Data Manipulation . 62
4.5.1 Objects Loading Strategies . 62
4.5.2 Extensions . 65
4.5.3 Database Administration . 66

4.6 MegaStore Interfaces - Advanced Features 67
4.6.1 Dynamic Browsing . 69
4.6.2 Ordering System . 70
4.6.3 System Security . 71
4.6.4 Current Implementation Status . 72

4.7 Derived Applications . 73
4.7.1 LuisterPaal Interface . 73
4.7.2 Music Sheet Application . 75

4.8 Conclusion and Discussion . 78
4.8.1 Major Characteristics and Benefits provided to MegaStore Application 79
4.8.2 Contribution of the MegaStore’s Information Management Approach

to GFI2S . 80

5 Information Management for Scientific Applications 81
5.1 Introduction . 81
5.2 Virtual Laboratory Architecture Design . 82

5.2.1 The VL Information Management for COoperation - VIMCO Module 85
5.3 Multi-Media Scientific Data Sets Manipulation 85

5.3.1 Storage of Large Scientific and Engineering Data Sets 87
5.3.2 Scientific Data Archiving and Cataloguing Using Dublin Core Standard 93

5.4 Universal Database Access - Based on Standards 99
5.4.1 Database Connection Module . 102
5.4.2 Query Execution Module . 102
5.4.3 Results Presentation Module . 102
5.4.4 Object Creation Module . 103
5.4.5 Further Benefits . 103

5.5 Data Access Security and Information Visibility (Safe/Reliable Data Export) 105
5.5.1 Role-based Access Control Definition 106
5.5.2 Flexible Role-based Access Interface 108

5.6 Physical Database Performance Analysis . 109

CONTENTS iii

5.6.1 Specific Functions to Access Binary Large Objects (Blobs) 110
5.6.2 Benchmarking Tests For Matisse Database System 110
5.6.3 Observations . 112
5.6.4 Lessons Learned . 112

5.7 Conclusion and Discussion . 112
5.7.1 Contribution to GFI2S . 113

6 GFI2S - Generic and Flexible Information Integration System 115
6.1 Introduction . 115

6.1.1 Focus of GFI2S . 117
6.2 GFI2S Information Integration Approach . 119

6.2.1 Local Adaptation Layer (LAL) . 122
6.2.2 Node Federation Layer (NFL) . 125
6.2.3 Application of Database Standards and Middleware Solutions in GFI2S144
6.2.4 GFI2S in Action . 145

6.3 Conclusion . 147

7 Conclusions and Future Work 149
7.1 Overview . 149
7.2 GFI2S Compared to Other Approaches . 152
7.3 Lessons Learned . 153
7.4 Future Work . 154

A Application of Database and Middleware Standards in FGI2S 157
A.1 Object-Oriented Standards and Extensions Adaptation for GFI2S 157

A.1.1 Object Definition Language – ODL . 158
A.1.2 Query Languages – SQL, SQL3, and OQL 160
A.1.3 Object Interchange Format - OIF . 161

A.2 Web Standard and Middleware Adaptation for GFI2S 162
A.2.1 Object Database Connectivity - ODBC 163
A.2.2 Use of JAVA for Application Programming 164
A.2.3 Use of XML for Information Exchange 165

Samenvatting 180

Abstract 182

Résumé 184

List of Figures

2.1 Information Integration Approaches - Classification 14
2.2 Distributed Database Architecture . 15
2.3 Example of a Simple Database Model . 15
2.4 Fragmentation in Distributed Database Systems 16
2.5 Data Distribution and Replication among Distributed Databases 17
2.6 Two Side Dependent Translation . 19
2.7 Access Through the Common Data Model . 20
2.8 Access to the Global Shared Database . 21
2.9 Schemas Representation in PEER . 24
2.10 The PRODNET Reference Architecture . 25
2.11 General DIMS Architecture Approach . 25
2.12 WebFINDIT Components are grouped in four Interactive Layers 27

3.1 Logical Units for the Waternet System architecture 34
3.2 Water Management Environment . 36
3.3 Information Management Architecture for the Water Network in Terms of Units 39
3.4 Simple Scenario for Subsystems Interaction in Waternet 40
3.5 PEER Federated Layer Representation . 41
3.6 Basic Integration Architecture . 45
3.7 Extended Integration Architecture . 46
3.8 DIMS Layer – Federated Data Process using Adapters 47

4.1 Base Schema Definition for the MegaStore System 55
4.2 MegaStore Server Architecture Description 57
4.3 Data Storage Mechanisms . 63
4.4 Music Input - Format A . 64
4.5 Music Input - Format B . 64
4.6 Music Input - Format C . 65
4.7 DBA Interface - OIF Loader . 67
4.8 An Activity Diagram for the Internet-Shop Interface 68
4.9 Main MegaStore Interface . 69
4.10 Album Songs Interface . 70
4.11 State Diagram for Orders . 70
4.12 Custom Order . 71
4.13 Conceptual Model for an e-MegaStore Application 73
4.14 LuisterPaal User Interface . 74
4.15 Database Model for the Music Sheet Application 76

v

vi LIST OF FIGURES

4.16 Music Sheet User Interface . 77
4.17 e-MegaStore System Architecture . 79

5.1 Functional layers within the Virtual Laboratory Environment 83
5.2 File System Approach . 88
5.3 External Data Link Approach . 89
5.4 One-Database Storage Approach . 91
5.5 Architecture for the Parallel/Distributed Database Server 92
5.6 Parallel/Distributed server architecture: an Application Case 93
5.7 An Object-oriented schema for the Dublin Core meta-data 96
5.8 Enhanced Object-oriented schema definition for the VL archiving environ-

ment based on the Dublin Core standard . 97
5.9 Example simplified Data Model for Authors and Publications 100
5.10 Universal Database Access Interface . 101
5.11 Schema Definition of the role-based Access Control with Export Views 106
5.12 Interface for Views Definition . 107
5.13 Safe/Reliable Data Export Interface . 108
5.14 Database performance when storing/retrieving large objects 111

6.1 The GF2IS Architecture following the Node-to-Node Federation 120
6.2 Communication Model among GF2IS components 121
6.3 Components of the Local Adaptation Layer 123
6.4 Node Federated Layer Representation . 125
6.5 Schemas representation adopted at the node federation layer 128
6.6 Integrated Scenario for Systems Interoperation 130
6.7 Export Schema (Exp2) Definition and Derivation - Example 131
6.8 Export Schema (Exp2) Derivation - an example 132
6.9 Integrated Schema Definition and Derivation - Example 133
6.10 Integrated Schema Derivation – an example 133
6.11 Schema Definition and Derivation Specification - an example 141
6.12 Classes and Attributes Instantiation - an example 141
6.13 Federated Query Processor – The Steps . 142
6.14 Federated Query Processor – Performing Mechanism 143
6.15 GFI2S - Global Overview . 145
6.16 Global Architecture and Interfaces to GFI2S 146

A.1 Application Access to Remote Database via ODBC 163

List of Tables

1.1 List of Requirements of Today’s and Forthcoming Applications 6

2.1 Commercial Systems Evaluation in Terms of Information Integration 23
2.2 Approaches Evaluation based on the Developed Systems 28
2.3 Approaches Evaluation based on the Application Requirements 29

3.1 Simple Network Local Schema in Control Unit Node. 42
3.2 Simple Network Export Schema (EXP1) in Control Unit Node 43
3.3 Simple Local Schema (LOC) . 43
3.4 Simple Imported Schema (IMP7) . 43
3.5 The Integrated (INT) Schema in Optimization 44

4.1 ODL Schema for the MegaStore Database . 56
4.2 An OIF Example . 66

5.1 Dublin Core: Elements Description . 95
5.2 Enhanced ODL schema for the VL archiving environment based on the Dublin

Core standard . 98

vii

List of Abbreviations

ADO: ActiveX Data Object

API: Application Programming Interface

BLOB: Binary Large Object

CDM: Common Data Model

CGI: Common Gateway Interface

COMCOL: Communication and Collaboration Layer

CORBA: Common Object Request Broker Architecture

DBA: Database Administrator

DBT: Data Browsing Tool

DC: Dublin Core

DCMI: Dublin Core Meta-data Initiative

DIMS: Distributed Information Management System

DLL: Dynamic Link Library

DTD: Data Type Definition

EC : Electronic Commerce

ER : Entity Relationship

EXP: Export Schema

FL : Federated Layer

FDBMS: Federated Database Management System

FRS: Federated Resources Specifications

FQP: Federated Query Processing

GFI2S: Generic and Flexile Information Integration System

IDL: Interface Definition Language

IIS : Internet Information Server

IMP: Import Schema

INT: Integrated Schema

IPR: Intellectual Propriety Rights

JDBC: Java DataBase Connectivity

ix

x LIST OF ABBREVIATIONS

LAL: Local Adaptation Layer

LAN: Local Area Network

LOC: Local Schema

LRS: Local Resources Specifications

MACS: Material Analysis for Complex Surfaces

NFL: Node Federation Layer

ODBC: Open Database Connectivity

ODBMS: Object Database Management Systems

ODL: Object Definition Language

ODMG: Object Database Management Group

OIF: Object Interchange Format

OLAP: On Line Analysis Processing

OLE-DB: Object Linking and Embedding for Databases

OMT: Object Modeling Technique

OQL: Object Query Language

ORDBMS: Object-Relational Database Management Systems

RDBMS: Relational Database Management Systems

RMI: Remote Method Invocation

SDDL: Schema Definition and Derivation Language

SMT: Schema Manipulation Tool

SQL: Structured Query Language

SQL/CLI: SQL Call-Level Interface

SQL/PSM: SQL Persistent, Stored Modules

STEP: Standard for the Exchange of Product Model Data

UML: Unified Modeling Language

UDBA: Universal DataBase Access Interface

VIMCO: Virtual-laboratory Information Management for COoperation

ViSE: Virtual Simulation and Exploration

VL : Virtual Laboratory

VLAM-G: Grid-based Virtual Laboratory Amsterdam

VL-e: Virtual Laboratory for Experimental Science

XML: eXtensible Markup Language

WAN: Wide Area Network

Acknowledgments

The work described in this dissertation is the result of more than five years of research
performed at the Informatics Institute of the University of Amsterdam. Many people have
supported my research effort amongst whom I would like to mention a few especially.

First of all, I would like to thank my promoter Bob Hertzberger and my co-promoter
Hamideh Afsarmanesh for their supervision and for giving me the opportunity to become
a member of the COoperataive Information Management (CO-IM) group. Without their
confidence and support this thesis would not have reached its final stage. Their final reading
and comments greatly improved the content and the readability of this thesis.

I am very grateful for the continuous support of the members of my group with whom I
shared many professional and social activities. In particular, Adam Belloum, Anne Frankel,
Ersin Cem Caletas, Victor Guevara, Mohand-Amokrane Abtroun, and Uzgul Unal. Special
thank is given to my officemate Cesar Garita, who was my research companion during all
my studies at the UvA. Many thanks to all other people at the institute with whom I have
shared the work and expertise: Hakan Yakali, Arnoud Visser, Philip Jonkergouw, and Zeger
Hendrikse. They always helped me keep up with the good work, and they supported me in
the final preparation of the thesis document.

I also want to express my appreciation to the members of the evaluation committee for
the time they dedicated to the promotion activities. I am sincerely grateful to all of them
for their many constructive comments and the principal advisory role they played during
the final writing process of this thesis.

I am also thankful to the partners of Waternet, MegaStore, and Virtual Laboratory
projects. Without their collaboration, the application cases, which constitute an important
part of this research would not have been so faithfully developed. Special thank if given to
Ronald Schut, Manager of the PCC company, and to Pieter de Haan who participated in
the final development of the MegaStore project.

During my stay in Amsterdam I have made many friendships at several places and for
different periods of time, who have in one way or another influenced my life in Amsterdam
and made it more enjoyable. Just to mention a few of them: Ahmed, Nikos Massios, Fouzi,
Djomaa, Hiddad, Youssef, Rachid, and others. I thank you all for your after-hours company
and for your true friendship and constant encouragement.

Furthermore, during the elaboration of this thesis, I received the assistance of many
colleagues and friends from the Faculty of Science. I cannot mention all the names, however,
I would like to mention the people of the secretariat, they were always very attentive and
accessible to my requests. In particular, Jacqueline, Virginie, and Erik offered me a lot of
help during the final stages of this thesis.

xi

xii Acknowledgments

Finally, I want to thank my parents, my sister, and my brothers. They were always my
greatest supporters in every way, they provided me with the necessary strength, and they
motivated me to study from the very beginning. But most of all I would like to thank my
wife Yasmina, she always encouraged me to continue and challenged me to go further with
my research work.

Ammar Benabdelkader
Amsterdam, September 2002.

Chapter 1

Introduction

The design and development processes of advanced applications in scientific and system en-
gineering domains consider different data modeling and information management strategies.
Data models define the data structures and relationships among the data, to reflect the
proper representation of the information each application needs. The information manage-
ment strategies however, depend on the global architecture design and the chosen database
system to fulfill the functionalities required by the application.

Diversity of the used information management approaches is usually due to different
characteristics and requirements of each application. Due to the complex requirements of
emerging applications, several scientific and business oriented organizations from biology,
medicine, physics, astronomy, engineering, e-commerce, etc. have realized the need to re-
consider their information management systems towards better addressing of collaborative
work. Therefore, these organizations are required to provide appropriate products and ser-
vices, and to better react to the new information management requirements in terms of data
integration. Traditionally, information integration and data translation among different het-
erogeneous and autonomous sites were considered a completely manual process, where either
the user or the database administrator must do the data translation and exchange. Nowa-
days, the problem of data integration and information exchange among heterogeneous data
sources has become a challenging issue to be studied, and different integration approaches
are being examined and evaluated.

This thesis addresses the issue of information integration for systems interoperation
among heterogeneous and autonomous applications, and mainly addresses solutions related
to the requirements for:

☞ Data integration from different sources distributed over a network of nodes.

☞ Interoperation and information exchange among a number of sites, which are hetero-
geneous, autonomous, and of distributed nature.

☞ Methodology design and generic tools development to support the information integra-
tion amongst a number of networked applications.

Within the different chapters of the thesis we propose methodologies, develop standard
tools for information access/exchange, and validate generic solutions that serve the infor-
mation management requirements. Generic solutions fit several applications emerging from
various domains, and facilitate systems flexibility and configurability. The design and de-
velopment of generic solutions, for information management and interoperation, is achieved

1

2 Chapter 1. Introduction

via the deployment of standards and middleware solutions during the different development
phases of an application, which evolve from modeling and design, to development and vali-
dation. In addition, the proposed solutions for information integration and systems interop-
eration consider the combination of emerging advances in databases and Web technologies,
and mainly deploy the related standard concepts for data modeling, data definition, informa-
tion storage and retrieval, information exchange, multi-platform-programming environment,
and Communication infrastructure. Considering the main characteristics defining advanced
applications, described above, the structure of the thesis is motivated by the following facts:

➀ There is wide variety of emerging networked applications in the diverse domains of sci-
ence, business, engineering, education, e-commerce, tourism, etc. Among the common
characteristics of these applications, we can enumerate distribution diversity, site au-
tonomy, and information heterogeneity. In addition, the use of different data modeling
approaches, information management strategies, and database management systems
complicate the interoperation among these applications.

➁ Based on the type of applications and the global objectives targeted by each of them,
the information management requirements differ from one application to another.

➂ To fulfill the information management requirements of these applications, several ap-
proaches have been proposed and developed, addressing the information integration
problem. Most of these approaches are application specific, while attempts in the
direction of using standard tools and generic solutions are quite a few.

➃ In order to validate different approaches addressing specific requirements of these ap-
plications, it is necessary to design and develop some prototypes as proof of concepts
in different applications.

➄ Based on the studies and prototypes developed within the different projects addressed
in this thesis, a ’challenging’ generic and flexible approach is designed and presented.
This approach benefits from previous methodologies and extends them in order to
provide generic solutions that can be applied within a wide variety of applications.

The five major points enumerated above illustrate the reason for the structure of the
thesis. The application cases, mentioned in point 4 above and addressed in chapters 3,
4, and 5 of this dissertation, provide the base for the Generic and Flexible Information
Integration System (GFI2S) addressed in chapter 6. Mainly, the GFI2S system reflects the
results of the lessons learned in three research projects, and thus, addresses the integration
of data sources, and the interoperation among diverse, heterogeneous, and autonomous sites
in a network.

This introductory chapter briefly emphasizes the main characteristics of emerging ap-
plications and outlines the major requirements of these applications in terms of informa-
tion management and interoperation. Chapter 2 describes some of the existing related
approaches, mechanisms, and tools for information integration. Three specific research
projects from different application domains are described in chapters 3, 4, and 5 of this
thesis. These chapters focus mostly on the study and analysis of the information man-
agement requirements for distributed and heterogeneous applications, as inspired by the
advanced cooperative applications in the domains of water systems industry, e-commerce,
and e-science. The E-Science1 domain addressed in chapter 5 mostly focuses on how to

1E-Science is about global collaboration in key areas of science, and the next generation of infrastructure
that will enable it. John Taylor, Director General of the Research Councils, OST.

1.1. Major Requirements in terms of Information Management 3

use scientific methods, and how to apply new software packages and web resources in the
analysis and solutions of real application problems, and in specific for the experiments in
research laboratories. Chapter 6 of the thesis addresses an open and flexible approach for
information integration and systems interoperation (GFI2S). First it outlines the main re-
quirements for emerging applications, and then it defines a common integrated approach
that can support many emerging applications from different application domains. The ap-
proach also applies object-oriented standards and middleware solutions in order to provide
more generic utilities.

1.1 Major Requirements in terms of Information Man-
agement

This section outlines the major requirements for future advanced applications in terms
of information management and systems interoperation. These requirements are mainly
identified through the three application cases addressed in the thesis, in addition to some
other research work and literature. A detailed description of these requirements is out of the
scope for this introductory chapter, appropriate descriptions however, are given in different
chapters of this dissertation. It is also necessary to mention that these requirements are
identified to support the information sharing and the data integration among networked
applications, while preserving their local autonomy, heterogeneity, and distribution.

Hereafter, we enumerate a list of the major requirements that need to be addressed
when designing and developing appropriate information management strategies for advanced
applications. In order to give a better understanding and a clear overview to the reader,
these requirements are grouped into six main categories:

R1: Information Integration for Systems interoperation

– Transparent access to data located at different sources, via on-line integrated
views.

– Interoperation among different systems in term of information exchange and ser-
vices.

– Information sharing within a large community of internal and external applica-
tions and users.

– Data integration from heterogeneous and distributed sources.

R2: Security for access and visibility levels

– User authentication based on pre-defined access rights.
– Information visibility levels based on pre-defined import/export schemas.
– Separation between public and proprietary information.

R3: User facilities

– Provide easy access to data independent of its internal format and structure.
– Support user friendly interfaces facilitating the exploration of information, char-

acterized by its complex structure.

4 Chapter 1. Introduction

R4: Use of standards and middleware solutions

– Universal accesses to data regardless the underlying database management sys-
tem.

– Use of standards and middleware solutions for data modeling and information
exchange.

– Support for multi-platform applications development.
– Scientific data classification and cataloguing via the deployment of emerging stan-

dards in the field such as Dublin Core for scientific data description and NetCDF2

for array-oriented data representation.

R5: System efficiency and effort Minimization

– System efficiency and performance for data manipulation.
– Short response time for on-line requests.
– High bandwidth for data transfer.
– Good strategies for data storage and data archives.
– Effort and cost minimization in both modeling and development phases.

R6: Advanced features

– Support for new data types introduced within the scientific application domain.
– Support the management of large data sets.
– Combine databases and advanced web technologies.
– Combine object-oriented concepts and emerging standards.

1.2 Application Cases: an Overview

The application cases presented in chapters 3, 4, and 5 of this dissertation illustrate three
examples of modern applications. These application cases are primarily addressed by their
data modeling concepts and information management strategies, that are required to support
each application domain. The choice of these three application cases have covered different
domain criteria on data integration mechanisms. In addition, these applications consti-
tute some of the research areas within the CO-IM3 group at the University of Amsterdam,
targeting the COoperative Information Management among autonomous and heterogeneous
applications. Furthermore, the diversity of these application domains have added more value
to our research work by introducing various requirements and thus, adding new challenges.
The three applications addressed in this dissertation include:

• Intelligent supervision and control in heterogeneous and distributed water environ-
ments (Waternet project),

• Interoperation and collaboration among large distributed databases for music industry
and e-commerce applications (MegaStore project), and

• Scientific data archiving and cataloguing for e-science within the Virtual Laboratory
environment (Virtual Laboratory project).

2Network Common Data Form
3CO-IM: COoperative Information Management group of the University of Amsterdam (http://www.

science.uva.nl/~netpeer)

1.2. Application Cases: an Overview 5

The study of these applications shows that even while addressing only the information
management issue, the requirements are quite complex and specific for each application
domain. Thus, the modeling constructs, the designed methodologies, and the used systems
differ from one application to another. More precisely:

1. In water supply industries (Waternet) distinct functionalities required in this industry
are supported by independent, heterogeneous, and autonomous subsystems. Each
subsystem performs its specific activity, but their co-working and complex information
exchange needs to be properly supported in order to assure a continuous supply, to
meet the quality standards, to save energy, to optimize pipeline sizes, and to reduce
wastes.

2. In music industry application (MegaStore), we address the design and development of
advanced and efficient internet-based Electronic Commerce (E-Commerce) services to
support necessary requirements for the buyers of different goods. In addition to the
traditional user requirements for every application environment, the developed sys-
tem properly addresses several efficiency, organization, and multimedia related issues.
Among the addressed issues, we enumerate: the data catalogues and information clas-
sification, short response time for on-line requests, high system performance, and high
data transfer rates.

3. In experimental life science application (Virtual Laboratory), the information man-
agement framework aims at developing digital libraries and toolkits to enable scien-
tists and engineers to work on their problems via experimentation. Especially, the
VL information management framework addresses some emerging issues related to the
management of large multimedia scientific data, information integration from a variety
of data sources, and collaborative developments in e-science environment.

As depicted in Table 1.1, a large list of requirements is addressed in each of these re-
search projects. On one hand the three projects are characterized by needs from different
application domains, thus the requirements differ slightly from one project to another. On
the other hand, considering the fact that the projects are carried out in different periods also
shows that some requirements change in time, to cope with the level of advances in different
applications areas. These application cases are not to be directly compared with each other,
rather they, in one way or another, complement each other in creating a more comprehensive
set of requirements and contribute to the design and development of the (GFI2S) solution.
In each of the application cases, some of the requirements do not apply due to the type of
application (symbolized by Φ); and some others were not addressed due the main aim of
the application (symbolized by X). As such, the Waternet is a specific peer-to-peer system
in which, the use of standards and middleware was not obligatory, while the MegaStore
project presents a system for a large community in which, the use of common technologies
in databases and Internet is mandatory.

Even at the level of each individual requirement, its consideration may be partially ad-
dressed within different research projects. For instance, the requirement of the use of stan-
dards and middleware solutions represents several concepts, which are partially addressed
within the three projects. As such, the MegaStore system addresses the standards at the level
of data modeling (e.g. UML), data definition (e.g. ODL), and information storage/retrieval
(e.g. SQL/SQL3, OQL). While, the Virtual laboratory information management framework
extends the use of standards to also support universal data access and scientific data mod-

6 Chapter 1. Introduction

eling. Similarly, the data integration and the information sharing are addressed at different
levels of complexity within each project.

Major Requirements in terms of
Information Management

Waternet
1996-1998

MegaStore
1999-2000

Virtual Lab
1999-2003

GFI2S

Information integration for systems
interoperation

- Transparent access to data
- Systems Interoperation
- Information sharing
- Data integration

√
√
√
√

√
Φ
Φ
Φ

√
√
√
√

√
√
√
√

Security for access and visibility levels

- User authentication
- Information visibility levels
- Separation between public and
private data

√
√
Φ

√
Φ√

√
√
√

√
√
√

User Facilities

- Easy access to data
- User friendly interface

X
X

√
√

√
√

√
√

Use of standards and middleware

- Universal access to data X Φ
√ √

- Standard Data modeling Φ
√ √ √

- Multi-platform development X X
√ √

- Data classification and catalogs Φ
√ √ √

System efficiency and minimization

- System efficiency and performance
- Short response time for user requests
- High bandwidth for data transfer
- Good strategies for data storage
- Effort and cost Minimization

X
X
X
X
X

√
√
√
X√

√
√
√
√
√

√
√
√
√
√

Advanced Features

- Support for new data types Φ
√ √ √

- Management of Large data sets Φ
√ √ √

- Combine advanced databases and
web technologies

Φ
√ √ √

- Combine O-O concepts and emerging
standards

X X
√ √

Notation:
√

:Addressed | Φ: Does not apply | X: Not addressed

Table 1.1: List of Requirements of Today’s and Forthcoming Applications

As depicted in column 4 of Table 1.1, the richness of the VL advanced applications,
which emerge from various scientific domains, requires the consideration of most defined
requirements. In addition, the Generic and Flexible Integration System (GFI2S) presented
in chapter 6 also considers the totality of these requirements in order to achieve a more
flexible and open solution, serving the interoperation among advanced applications.

1.3. Thesis Contribution 7

The list of requirements presented in Table 1.1 can also be categorized into two main
categories of:

• Several information Research Challenges that need to be addressed in order to support
the integration of information among networked applications, while preserving their
local autonomy, heterogeneity, and distribution. Some of the Research Challenges
that are addressed in different chapters of the thesis document include: information
integration, security for access and visibility levels, and other advanced features such
as supporting new data types and applying standards to object-oriented concepts.

• Several standard tools and advanced Web technologies that need to be applied for
information management, to facilitate the information exchange among interoperable
systems. Namely, standard data access, user friendly interfaces, and support for new
data types.

The contribution of this thesis to the area of information integration and system interop-
eration is to investigate some of the research challenges and to apply emerging technologies
and database standards to data integration mechanisms. Previous work on information in-
tegration for systems interoperation has developed some specific solutions for information
exchange and data integration. These solutions are characterized by their specific tools and
languages, which are mostly difficult to learn and hard to maintain. Our approach however,
applies emerging standards and Internet technologies for information integration among au-
tonomous and heterogeneous sites. This approach presents an open information integration
facility for heterogeneous systems, while preserving their autonomy and distribution.

1.3 Thesis Contribution

The emerging advanced applications from scientific and business organizations present new
challenges to the research in the domain of information management and interoperation.
The challenges, primarily include: handling multi-media data types from the scientific do-
main, and deploying new co-working environments mainly based on the Internet technology,
middleware, and standard solutions. MiddleWare in this thesis document is a general term
representing any developed software that serves to “glue together” or mediate between two
separate and usually pre-existing programs. For instance, a common application of mid-
dleware is to support programs written at one site with a particular database for access
to other databases. As standard solutions to be applied to the information integration for
systems interoperation, this thesis addresses: ODL for data definition, OIF/XML for objects
representation, ODBC/JDBC for database connection, and XML as a flexible way to create
common information format and share the format together with the data on the World Wide
Web, intranets, and elsewhere.

Research in the domain of information exchange, interoperability4, and data source in-
tegration is still an open area for advanced architectures design, integration mechanisms,
and tools development. Furthermore, the new emerging Internet technology for applica-
tions communications and middleware solutions for universal data access via standards offer
promising approaches for the research in this area. Thus, there is a growing need for new

4Interoperability is basically the ability of a system or a product to work with other systems or products
without special and extra effort on the part of the end-user

8 Chapter 1. Introduction

approaches to be designed and tools to be developed, in order to support interoperable
information systems and to facilitate their collaboration mechanisms.

The work presented within this dissertation is an “application driven database research”,
to better support the real information management needs and requirements of advanced
emerging applications. It also introduces new approaches to integrate different types of
data from heterogeneous applications to achieve broader information access, minimizing
specialized development efforts, and attain competitive advantages.

In order to handle the new emerging data types, the work described in this disserta-
tion document addresses two complementary trends. The first is to extend the traditional
database systems to handle new and different data types and migrate these types of data
into the DBMS. The second is to apply the middleware approach to provide standardized
interfaces for all types of data, maximizing interoperability and reusability, while leaving
the data in the place where it is generated or heavily used.

The main aim of the thesis is to address the design and partial development of a generic
system to support information sharing among a wide variety of applications, and to assist
their proper collaborative working environment, and flexible information integration.

Based on the expertise gained in the design and development of the various R&D projects
during this Ph.D. study and based on the investigation, evaluation, and validation of the
methodologies and systems discussed in chapters 3, 4, and 5 of the dissertation, an open
and flexible integration approach is presented in chapter 6. The flexibility of this approach
is achieved via some database extensions and through the deployment of object-oriented
standards, emerging Internet technologies, and middleware solutions. The database model-
ing and the scientific data cataloguing and archiving, are supported via the deployment of
the object-oriented standards. While, the emerging Internet technologies and middleware
solutions allow universal access to the data, ease the information exchange mechanisms, and
facilitate the multi-platform applications development. Therefore, the thesis contribution to
the research area of information integration resides in the specific combination of emerging
standards in the filed with the fundamental research approaches and the way in which they
are inter-linked.

The approach we propose does not only take into consideration the work that has been
done in the area of information exchange and interoperation. But, it also considers the
utilization of both advanced web and database technologies in order to support the new
requirements from the scientific applications for handling large multimedia data sets, and
applies the new emerging technology for Internet communications and universal data access
through middleware and standard solutions. As such, the developed framework and the de-
signed methodology enable easy cooperative work among existing systems, while preserving
their autonomy and heterogeneity.

1.4 Organization of the thesis

The remaining of this dissertation document is organized as follow:

• In Chapter 2, we study, analyze, and discus a number of classifications for information
management and the state of the art in data integration approaches. This study
considers both distributed and integrated systems, and illustrates the need for these
distinct approaches in order to support the complex requirements of different advanced
cooperative applications from system engineering to scientific domains.

1.4. Organization of the thesis 9

• Chapters 3 and 4 present two case studies in the field of intelligent supervision/control
in heterogeneous and distributed applications, namely, the water distribution man-
agement and the advanced word wide databases for e-commerce. The designed and
developed frameworks for these specific cases will be evaluated. This evaluation allows
the validation of the most important and relevant features, that need to be taken into
consideration when designing the flexible integration approach. These beneficial fea-
tures are further addressed and deployed within the integration approach presented in
chapter 6.

• Chapter 5 addresses a third application case from the scientific domain; namely, the
information management framework of the Virtual Laboratory project. The Virtual
Laboratory project addresses the issue of manipulating large scientific and engineering
data sets in terms of data acquisition from heterogeneous resources, information mod-
eling of complex and varied application types from several large scientific emerging
domains, data archiving mechanisms for very large objects (e.g. binary and text), and
resources cataloguing based on using the Dublin Core standard model. The informa-
tion management approach of VL, focuses on the use of middleware and standard de
facto solutions as a means to enforce and standardize the information access/retrieval
processes among multidisciplinary applications. The proposed approach incorporates
several advanced key features to support system efficiency and performance, enforced
by the provision of security for access, and visibility rights to information, database
indexing, cataloguing mechanisms, and database performance analysis.

• Chapter 6 proposes a Generic and Flexible Information Integration System (GFI2S)
based on the investigation, evaluation, and validation of the methodologies and sys-
tems discussed within the previous chapters. The extensibility of GFI2S is achieved
via several data management functionality extensions and through the deployment of
object-oriented standards, emerging Internet technologies, and middleware solutions.
An important distinction between the system we are designing and other integra-
tion systems resides in the introduction of the two components in the architecture
of GFI2S. The first component of the architecture (called Local Adaptation Layer)
assures proper communication between the local data source and its federated layer.
While, the second component (called Node Federation Layer) presents the node’s win-
dow to the outside world for information sharing and interoperation.

• Finally, chapter 7 concludes the thesis and summarizes the main conclusions derived
from this research and provides examples of the GFI2S deployment in real applica-
tions.

Chapter 2

Information Integration
Approaches, Mechanisms, and
Tools

2.1 Introduction

A wide variety of information management and data integration approaches, mechanisms,
and tools are introduced and being used for diverse applications in the domains of life sci-
ences, engineering, education, health care, business, tourism, and art. These approaches
are mostly designed and developed to cope with the specific requirements of each applica-
tion. Among the major requirements for today’s and forthcoming applications, which are
described in Table 1.1 of Chapter 1, we enumerate: site behavior, user facilities, security
for access and visibility rights, collaboration and interoperation, use of standards and mid-
dleware solutions, system efficiency and minimization, and other advanced features. The
diversities of the proposed approaches for information management and data integration
are due to different aspects considered for each application, and which relate to the DBMS
architecture, data storage approaches, and system interoperation mechanisms.

This chapter presents a survey on several research and development approaches that
have directly or indirectly contributed to the issue of information integration and interoper-
ation mechanisms among autonomous, distributed, heterogeneous systems. Considering the
main emphasis of the thesis that addresses the integration of heterogeneous data sources
and interoperation among autonomous sites, special emphasis is given to the data distribu-
tion, information exchange, and interoperability issues. Thus, the three concepts described
below are used as the base for the classification of existing approaches and mechanisms for
information integration:

☞ DBMS architecture: For most of the emerging applications, and considering the
enormous improvement in networking and communication protocols, it is clear that
the client/server architecture has become the key issue for application development.
However, depending on the type of application, decision has to be taken regarding
whether to use a centralized, distributed [SBD+83, TBD+87, PH 98, NDL+00], or
even a federated approach [HM 85, SL 90, TA 93, HTH+99, GAH 01] for proper sup-

11

12 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

port of the application requirements in term of information management and systems
interoperation.

☞ Data storage/access: The manner in which data is being stored and accessed plays
an important role in defining the proper integration mechanism, to be adopted for a
given application. For instance, applications in the area of data mining and Online
Analysis Processing (OLAP) [Sho 97, VS 99, PP 00, WB 97, FS 96, CD 97, and Kar
98] are based on the access to catalogs and repositories of data, which are reformatted
and prepared for certain analysis tasks. While, in most applications from scientific
and system engineering domains [WMP 98, PWD+99], the data processing mecha-
nisms require that information has to be fetched on-line, processed on-line, and the
proper decision has to be made on-line when necessary [BAK+00, ABK+00, AKB+01].
Similarly to the access mechanism, the data storage processing requirements may differ
from one application to another. Furthermore, certain applications keep results locally
and private, others publish the results immediately after generation, while a third type
of application may require an evaluation time in order to validate the results before
they get published and made available to the outside users.

☞ System interoperation: The interoperation mechanism for exchanging information
and services among a set of users/applications within a collaborative community also
defines the coupling mechanisms between those systems [LA 86, LMR 90, ZK 96, BA
98a, THB+98]. When data is integrated from external sources, it is very important for
each system (e.g. data source) to clearly define the interaction mechanisms with other
systems. Some criteria for this interaction involves handling the inter-linking among
distributed data over different locations, and the format in which data is going to be
exchanged.

It is clear that the complexity of the proposed approach for every advanced application
depends very much on the specific characteristics of the application and its required level of
integration. Therefore, the more complex and higher is the requested level of integration in
the application, the more complex and difficult becomes the development process.

In this chapter, we study the main approaches introduced so far for information ex-
change and interoperation for different application domains. Furthermore, these approaches
are discussed, evaluated, and those that can support some requirements for different ap-
plications and better fit the general integration purposes are validated for the general use
cases. However, this is not a simple task since the requirements in terms of information
handling are quite different in centralized applications from those that are distributed or
federated applications. Some of the applications rely on the use of centralized archived
data, others require homogeneous information replicated at different sites, a third type of
applications may require run-time generation of information for decision support, and so on.
Thus, it becomes unrealistic to validate and conclude that one specific and concrete solution
can support all types of today’s and forthcoming applications.

2.2 A Taxonomy for Information Integration

There are many classifications and initiatives aiming at the provision of a taxonomy for
the information integration approaches. Some classifications look to the problem of in-
tegration/interoperation from the data access dimension, some others from the distribu-
tion/centralization dimension, and still some others from their heterogeneity and autonomy
dimension [SL 90, RK 97, DD 99, ACM 00].

2.2. A Taxonomy for Information Integration 13

In order to describe other approaches suggested by research related to the subject of this
thesis, and specially considering their wide diversity and distinct focus, we have resorted
to the definition of certain classifications. In the proposed classification approach, since
the main subject of the thesis consists of integrating heterogeneous data from distributed
sources, we address the categorization architecture from the distribution/Integration point
of view. The main purpose of this classification (and the names that are suggested and
associated with each category) is to be able to discuss the common features among a group
of systems that follow one general approach. As such, these “category names” might be
defined differently in some other publications, since in general there is no common consensus
among database researchers on the exact definition of these category names and the database
systems they represent. Also this classification of information integration approaches is
specifically focused on the main characteristics emphasized in the thesis, namely the design
of a flexible environment to support many heterogeneous application domains, as it is the
case for instance in scientific and engineering domains, like Virtual Laboratory environment.

Later in Chapter 6 of this dissertation, we will use the results of our investigation repre-
sented in this chapter and our classification of approaches, for identification and validation
of a set of generic methodologies that can better support the general collaboration processes
among heterogeneous nodes in a network of databases and applications. Provision of a set
of generic tools and methodologies for information management facilitates the collabora-
tion process among distributed and heterogeneous nodes. In such methodology the use of
standard tools and middleware solution will play an important role in solving many issues
related to the use of multi-platform systems, different architectures, and various information
modeling methodologies.

Figure 2.1 illustrates a taxonomy diagram for information integration approaches. As
depicted in this figure, at the first level of the proposed hierarchy, the management of het-
erogeneous data sources (information) is classified into two main categories of Distributed
Systems and Integrated Systems. Distributed systems typically support applications that
share common database software at both DDBMS servers and their applications. Inte-
grated systems however, support database applications that address similar tasks in differ-
ent manners or using different representations and data modeling systems. Within each of
these two categories several approaches are identified, studied, and evaluated based on the
applications’ requirements.

At the second level of this taxonomy, different and various approaches for information
integration are derived from the two categories illustrated at level 1 of Figure 2.1. On one
hand, distributed database systems can follow horizontal fragmentation, vertical fragmen-
tation, or hybrid fragmentation [EN 00, OV 99]. On the other hand, when the application
becomes more complex and requires additional functionalities, most research on related
approaches, focusing on the needs for data heterogeneity resolution, result in a variety of
integrated systems. Although, a number of researchers in this area still consider all these
approaches as heterogeneous distributed systems.

Within the integrated approach, Domenig and Dittrich [DD 99] present a taxonomy of
systems for querying heterogeneous data in which, they distinguish between materialized and
virtual approaches. Similarly, Florescu et al. [FLM 98] make an important distinction, in
building data integration systems on whether to take a warehousing or a virtual approach.
In our classification, we name the two approaches respectively Physical Integration and
Virtual Integration. In a Physical Integration the data originating from local and remote
sources are integrated into one single database on which all queries can operate. In Virtual
Integration (also referred to as multidatabase systems in some literatures), data remains on

14 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

the local/remote sources, queries operate directly on them and information integration has
to take place on the fly during the query processing.

Emerging Information
Integration Architecture

Distributed
Systems

Integrated
Systems

Physical IntegrationVirtual Integration /
Multi-Database System

Vertical
Fragmentation

Horizontal
Fragmentation

Data
Warehouse

Centralized
Database

Global Schema
Representation

Pair-Wise
Translation

Intermediate Data
Interchange Format

Hybrid
Fragmentation

Level 1

Level 2

Level 3

Level 4

Non Federated DBS

Loosely Coupled Tightly Coupled Loosely CoupledTightly Coupled

Federated DBS

Node-to-Node
Federation

Figure 2.1: Information Integration Approaches - Classification

At the third level of the taxonomy, the variaty of the proposed approaches becomes more
and more specified and complex, this is due to the advanced functionalities and complex
features required by advanced applications emerging in the domains of system engineering,
medicine, biology, etc. Nowadays, those applications are of wide use, significant importance,
and real necessity.

• The physical integration expands into centralized databases and data warehouses. In
a centralized database, information is migrated from various sources into a universal
DBMS, while in data warehousing information may be imported in different form and
volume than it exists in its originating sources.

• The virtual integration derives into federated and non-federated systems. Each of these
systems can be either loosely or tightly coupled.

At the fourth level of the taxonomy, we categorize the intermediate data interchange
format and the pair-wise translations as examples of non-federated systems and global
schema representation and Node-to-Node federation as examples of federated multidatabase
systems.

The next sections present and discuss in more details these different approaches illus-
trated on Figure 2.1; more focus will be put on Virtual Integrated systems, due to their
relation and direct impact on the subject of the thesis.

2.2.1 Distributed Systems

In distributed systems, the applications considered by the network have similar functionali-
ties and share similar type of information. Furthermore, most of the involved sites use the

2.2. A Taxonomy for Information Integration 15

same software for data modeling, information management, and accomplishment of their
global functionalities. In such architecture, distributed database systems (DDBMS) are de-
fined as a collection of multiple logically interrelated databases distributed over a computer
network. A distributed database management system (DDBMS) is a software system that
manages the distributed database, while making the distribution transparent to the user.

Figure 2.2 illustrates a distributed database architecture, in which information is stored
within four distributed databases located at different remote sites and inter-linked through
the communication network. In such a system, distribution is transparent to the user in the
sense of hiding the details of where the data is physically stored within the system. Thus,
from the point of view of the operational details of the network, the user has the freedom
concerning the data location transparency and objects naming transparency [EN 00].

Communication
Network

Site 2 DB 2 Site 1 DB 1

Site 4 DB 4 Site 3 DB 3

Figure 2.2: Distributed Database Architecture

Figure 2.3 presents an example of a simple database model. Its structure consists of two
classes: Product and Customer each characterized by a set of attributes defining the two
classes and a relationship among them. The example will be used within this section to
illustrate some of the concepts related to distributed database systems.

Product

Product Name: String
Product Description: String
Product Category: Enum
Product Price: Float

Customer

Customer Name: String
Customer Address: String
Customer City: String
Customer Phone: String

0..*

0..*

Ordered By

Orders

Figure 2.3: Example of a Simple Database Model

2.2.1.1 Data Fragmentation and Allocation

Figure 2.4 illustrates an example of the three types of fragmentation, which are possible in
distributed systems:

① Horizontal fragmentation distributes a relation into sets of tuples (rows). The
database model conserves the same structure, restriction however is applied to the set
of records (instances) based on some conditions.

② Vertical fragmentation distributes a relation into sub-relations where each sub-
relation is defined by a subset of the columns of the original relation. All objects are
partially present in the fragmented class, restriction is made for some attributes of the
class (table).

16 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

③ Hybrid fragmentation partitions a relation by applying the horizontal and vertical
fragmentation strategy one after the other. Restriction is made on both attributes and
instances of the fragmented class.

Horizontal Fragmentation
Vertical Fragmentation
Hybrid Fragmentation

Product
- Name
- Description
- Category
- Price

Product B
- Name
- Description

Product A
- Name
- Description
- Category
- Price

Category = 'Home Care'Price < 25

Product C
- Name
- Price

Figure 2.4: Fragmentation in Distributed Database Systems

Figure 2.4 illustrates the three types of data fragmentation:

• Horizontal fragmentation: the class Product is restricted at the instances level to only
preserve products of ’Price < 25’.

• Vertical fragmentation: the class Product is restricted at the attribute level to Name
and Price.

• Hybrid fragmentation: the class Product is restricted at the attribute level to Name
and Price, and at the instances level to only hold products of category ‘Home Care’.

In distributed systems failure at a single site does not make the entire system unavailable
to all users; when the data and software fail on one site the other sites continue to oper-
ate, which improves both system reliability and availability1 in comparison to centralized
approach. Furthermore, safeness can also be achieved and improved by replicating data and
software at multiple sites.

Figure 2.5 gives a global overview and an example on how fragmentation and replication
can be established within a distributed system. Here, the data fragmentation and distribu-
tion is illustrated using the simple data model presented in Figure 2.3. In addition to the
three types of fragmentation, a mirror site is defined as a part of the distributed system.
The mirroring site assures in fact the availability and safeness of information by holding a
replicate of all the data, which is distributed among the other sites.

The distributed database architecture is still valid and used, a representative example
and a good candidate for distributed systems is the banking application environment where
all the distributed sites share the same database schema and participate in achieving a global
and unique task. Another example with a small difference in the distributed database model
can be the case of administrating a main hospital with many branches and care centers
performing similar activities.

However, distributed systems are not fully appropriate for instance in emerging scientific
applications, since it is very hard to guarantee the usage of the same data model and software
tools for all cooperating/integrating sites.

1Reliability is defined as the probability that a system is running at a certain time point, whereas
availability is the probability that a system is continuously available during a time interval [EN 00]

2.2. A Taxonomy for Information Integration 17

Communication
Network

Site 2

- Product: Category=Home Care
- Customer: City = London

Site 1

- Product: Name, Category
- Customer: Name, City

- Product: Name, Description
- Customer: City = Paris

- Product: all attributes
- Customer: all attributes

Site 4 Site 3

Mirror Site

Vertical Frag. Horizontal Frag.

Hybrid Frag.

Figure 2.5: Data Distribution and Replication among Distributed Databases

2.2.2 Integrated Systems

In the main area of integrating heterogeneous and distributed information sources, the in-
formation integration generally implies uniform and transparent access to data managed by
multiple databases. The task of an integrated database system is to answer queries that
may require extracting and combining data from multiple local/remote data sources. An
important distinction in classifying the different strategies for the manipulation of the data
is whether to take a physical or a virtual integration approach [FLM 98].

1. In the physical integration, data from multiple sources is loaded into one single com-
prehensive new database on which all queries are applied. This requires that the new
database needs to be updated when data changes, but the advantage is that adequate
performance can be guaranteed at query time.

2. In the virtual integration, the data remains at the local/remote sources where it be-
longs. Queries to the integrated system are decomposed at run time into sub-queries
to be applied to the local/remote sources, and then the integration of the sub-queries
results must take place on the fly during the query processing. In this approach data
is not replicated and is guaranteed to be up-to-date at query time.

The following sections will describe in more details both the physical and virtual inte-
grations and address different categories derived from these two approaches. The variations
in manipulating and handling the exchange of information reside in the manner the data is
gathered and accessed.

2.2.2.1 Physical Integration – warehouses/, malls, or marts

The physical integration (also known as materialized approach in some literatures) involves
extracting data from a variety of heterogeneous distributed systems and applications, stan-
dardizing it to fit a global format, transporting it from the place where it belongs, and
loading it in the local database in desired formats. There are essentially two variants of
materialized systems [DD 99]:

a. Data from the remote systems is extracted, integrated, and stored in a centralized
database , therefore, the remote systems are not used after data is extracted. In
such a system, in case of updates to both data and meta-data of every remote site,
the centralized database must be adjusted to reflect eventual changes in the remote
systems. The main drawback of this approach is that existing applications have to be
rewritten to fulfill the new database model.

18 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

b. Data from the remote sources are imported into one DBMS, the data warehouse .
The difference with the previous case is that the underlying data sources are still
operational and the warehoused data is typically not imported directly in the same
format and volume as it exists in local systems. It is mostly transformed, cleaned,
and prepared for certain analysis tasks, like data mining and OLAP (Online Analysis
Processing).

The physical integration model is considerably adopted and used within data warehousing
environments [FS 96, CD 97, WB 97, Kar 98] and OLAP databases [Sho 97, VS 99, PP 00].
Recently, several commercial DBMS products provide certain solutions for data warehousing
and OLAP. To name a few of them, Oracle Migration Workbench2 [Daly 01], DB2 Warehouse
Manager [ED 01], Sybase warehouse studio [Syb 99], SAP/R3 Hummingbird [Hum 00],
Hyperion [Hyp 01], Cognos [Cog 00], and Comshare [Com 00]. They provide capabilities that
specifically address the specifications and requirements of data warehousing. Furthermore,
These software houses provide complete open warehouse design and meta-data management
environments that simplify the process of building and managing warehoused data while
delivering impressive flexibility.

Within the Virtual Laboratory3 project, the physical integration approach can be vali-
dated for some applications to support data archiving, cataloguing, and publishing, where
organizations with similar working environments are able to gather and collect their finalized
data in a global repository to be used for other activities. Archives in scientific applications
provide storage of information off-line, and make it available when necessary to be used as
input for experiments during a mining session, or an analysis process. Published data in the
area of scientific experimentation refers to the final successful experiment results that an
organization/system wishes to make available to outside users. Both archived and published
data represent a huge volume of data that is not susceptible to be changed frequently.

However, the physical integration is not fully suitable for large scale interoperable appli-
cations, in which the design and development of a real federated system proves to be more
appropriate.

2.2.2.2 Virtual Integration - Multi-Database Systems

The main aim in the virtual integration is to give the user the impression of working with a
single DBMS, while, in fact, the data is managed by several individual DBMS. This approach
is more appropriate for building systems where the number of databases is large, the data
is changing frequently, and there is little global control over the participating local/remote
data sources.

In the area of implementing integrated information systems, in which different systems
need to collaborate, the development of software layers and tools turn out a necessity.
These tools facilitate the exchange and the sharing of data among collaborative systems
by translating data between different applications and making the information distribution
transparent to the users. From the implementation point of view of multidatabase systems,
many different approaches, dealing with this issue, are designed and developed.

2http://otn.oracle.com/tech/migration/workbench/content.html
3The Virtual Laboratory project (1999-2003) supported by the Dutch ICES/KIS foundation aims at

designing and developing hardware and software reference architecture and a digital library framework to
enable scientists and engineers to work on their problems via experimentation in the field of technical and
scientific applications, making optimum use of by modern Information Technology.

2.2. A Taxonomy for Information Integration 19

Within the next sections we will present and discuss different approaches that have been
investigated in the area of integrating heterogeneous and distributed data sources, namely,
the pair-wise translation, the intermediate data format, global schema definition, and the
node-to-node federation.

Pair-wise Translation

Using the pair-wise translation, we keep and preserve the various representations of different
applications then, we provide translation tools from one application to another. As depicted
in Figure 2.6, within this approach we have to develop a two-side dependent translator tool
for every application within the system. Any change in any of the applications, requires
rewriting some parts of code, the integration of a new application requires the development
of 2*N new translators in which N represent the number of communicating applications
in the network.

Application _3

Pre-processor
Post-processor

P
re

-p
ro

ce
ss

or

Po
st

-p
ro

ce
ss

or

Intermediate
Data Model

Application _2

Pre-processor
Post-processor

P
re

-p
ro

ce
ss

or

Po
st

-p
ro

ce
ss

or

Application _4

Application_1

Figure 2.6: Two Side Dependent Translation

The two-side dependent translation approach provides the following advantages [AE 95]:

• Every application will be designed in a manner that optimizes the considered tasks.

• Every module may be extended without any necessary updates in the other parts of
the system.

• The specific translation to each application reduces the volume of information that
needs to be exchanged, since every module can execute locally some tasks and send
the results in a condensed format.

• A more flexible exchange for data and services can be obtained using database stan-
dards for data modeling and information access/exchange (e.g. ODL, OQL, and XML).
These standards facilitate the logical links and interfaces between different pieces of
information within those interconnected applications.

The pair-wise translation approach better suits in small environments where the number
of communicating applications is very limited.

20 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

Intermediate Data Interchange Format - Common Data Definition Model

The integration approach through intermediate data format develop a general representation
for all the anticipated data types, this representation must include some dependencies among
different types. The intermediate data model also makes assumption for its entities both
for their representation and the methods of handling them. An entity, e.g. a Triangle for
instance, can be represented by its three points in application 1 and by its three segments
in application 2. Thus, the handling methods for this entity change from one representation
to another.

Figure 2.7 illustrates the architecture used by the intermediate data format, in which
every application participating in the system must have at its disposal two translators:

a- The pre-processor from the application to the intermediate format, which translate
data from the format used by the application and make it available according to the
intermediate common format,

b- The post-processor from the intermediate format to the application, which takes
information available in the intermediate format and translates it to fit the local format
adopted by the application.

App_1

App_2

App_3

App_4 App_5

App_6

Figure 2.7: Access Through the Common Data Model

Examples of standards that deploy the intermediate data format and consider it for
modeling object structures and representations include STEP, IGES, DXF, SET, VDA, etc.
[Fow 95, TM 96]. These standards (also reffered to as neutral formats) are designed to fulfil
a number of high level industry requirements, and are based on a number of fundamental
principles for shared product databases.

The advantage of using the common intermediate definition over the two-side dependent
translation is that each application has to communicate only with the intermediate format
instead of communicating with all other applications, thus reducing the number of necessary
developed translators, especially when the number of applications grows.

Nowadays, the deployment of middleware solutions and standards can extend this ap-
proach, so the inter-modules communication becomes transparent. The node-to-node inte-
gration approach, presented in Chapter 6, will benefit from a part of this architecture, in
which, database standards will play a role similar to the intermediate data model, in order
to unify the schema definition, the query language, and the data exchange processes within
the integrated applications.

2.2. A Taxonomy for Information Integration 21

The Global Schema Representation – Schema and Data Integration

The global schema representation (also known as universal representation in some litera-
tures) is based on the development of one single representation that manages all types of
data required by the networked applications and completely integrates multiple data sources
into one global database in order to provide a single and coherent view on the data [SP 94].
As depicted in Figure 2.8, the global schema representation requires that all system com-
ponents, accessing the single database, shall conform to the shared format and create their
specific views based on it.

Data Load

View_1 View_2 View_n

Global Shared
Database

Figure 2.8: Access to the Global Shared Database

Modular and extensible systems make this approach not attractive for the following
reasons [AE 95, EK 91]:

• There is no guarantee that new applications do not need different formats for their
internal operations,

• In today’s applications, there is always the introduction of new methods that require
particular information structure to be reflected in the underlying database model of
the applications,

• The use of such a representation, which supports an exhaustive structure, represents
a supplementary load for systems that manage simple applications.

In addition, the global integrated schema is hard to maintain and to automate. Further-
more, systems autonomy is often sacrificed in order to solve semantic problems.

Node-to-Node Federation

The information dealt with in federated systems consists of different pieces of information
gathered from disparate local and remote sources and integrated into one coherent view,
known as integrated schema. Therefore, the integrated schema is constructed by merging
the structure of the local schema with the various imported schemas. The imported schemas
represent the part of information that other systems wish to share with the outside wold.

22 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

There are two main features distinguishing a federated system from a traditional database
system [FLM 98]:

1. A system within the federation does not communicate directly with a local storage
manager. Instead, the query execution engine communicates with the corresponding
wrappers on top of it. Those wrappers are defined within the federated layer developed
for each system.

2. The user does not pose queries directly on the schema in which the data is stored.
Instead, the user poses queries on an integrated (or mediated) schema defined at the
federated layer of his system.

In the federation approach, every site/user is responsible for integrating the schemas they
need for their applications. Support is therefore provided by a federated or multidatabase
language that contains the syntactic constructs needed for accessing and manipulating dis-
parate and autonomous databases [BBE 99]. In addition to these constructs, a federated
system requires a set of sources defining the mapping rules, the semantics description, and
eventually the data exchange format. These sources also define the manner in which infor-
mation will be imported, integrated, and accessed.

The way in which information is imported, integrated, and accessed in multidatabase
systems differs from one approach to another. They all consider the data distribution,
the heterogeneity of information, and the autonomy of the systems participating in the
collaboration. However, visibility level for the data and the heterogeneity at the DBMS
level are not fully considered within most of those systems. In addition, extensibility for
new DBMSs to be considered within the federation is not supported.

Some of the commercial products such as Sybase, Oracle, Ingres/Star, and UniSQL/M
have extended the functionalities of their systems to support some of the general require-
ments of the multi-database systems [HBP 94] [SYE+90]. Therefore, each of these DBMSs
provides some type of federation4 where the federated schema is commonly defined for all
the nodes that participate in the collaboration. The so-called federated schema is created
based on each node decision about what information is commonly shared. A node can also
decide at any time to extend, restrict, or remove its shared data. However, the federated
approach provided by those systems represent in fact a very limited federation where a node
is only allowed to share the same data with all the other nodes or do not share any thing.

The UniSQL/M, for instance, is an object-relational multi-database system that enables
interoperability of multiple databases. Currently, UniSQL/M supports the integration of the
following other database types: UniSQL/X, Oracle, Informix, and Sybase. UniSQL/M gives
its applications and users access to those databases through a single SQL interface, however,
it does not address the visibility level of shared data at the local databases. Through the
registration process, a database has to decide to share every thing or do not share; thus,
there is no support for full federation process as required in different types of applications.
Furthermore, user access is defined at the global schema without support for any access
level, which is very critical in today’s applications.

The multidatabase approach, as addressed and provided by some commercial products,
better suits specific applications within the same organization in which, different software
tools need to adjust their input/output. In such a case (within the same environment),
visibility levels may not be highly required and heterogeneity of used systems and data
modeling is not very complex.

4Federation provides applications and queries with access to data stored in multiple databases without
requiring knowledge of their distributed location.

2.2. A Taxonomy for Information Integration 23

Table 2.1 illustrates and evaluates some of the commercial database systems in terms of
integrating information from different sources. The table shows the product name, the used
data model, support for information visibility levels, and the consideration of standards in
terms of information modeling, query language, and information exchange. The evaluation
illustrates that most of these products are extension to the existing relational DBMSs, in
which the use of standards is well considered, while the information visibility levels and the
node-to-node federation are not fully taken into account. Data is usually collected from
different sources and locally (physically) stored according to the global schema definition.

Product Data Models Global
Schema

Visibility
Levels

Use of
Standards

Data
Export

Query
Language

UniSQL/M Relational,
UniSQL, Oracle,
Informix, Sybase

Yes No Yes No SQL

Sybase Relational Yes No Yes No SQL-Like

Oracle Relational Yes Yes Yes No PL/SQL

Ingres/Star Relational Yes No Yes No SQL-Like

Table 2.1: Commercial Systems Evaluation in Terms of Information Integration

The remaining of this section will address three examples of federated systems for which,
the adopted architecture is close to satisfy the requirements of today’s applications emerging
from scientific and industrial domains. The prototypes concern:

1. PEER system [ATW+94]: an object-oriented federated information management sys-
tem supporting the import, export, and integration of heterogeneous and autonomous
schemas.

2. DIMS of PRODNET II [CA 99]: Distributed Information Management System for an
IT platform supporting industrial virtual enterprises, and providing mechanisms for
inter-operation and information exchange in real time.

3. WebFINDIT [BBO+99a]: a system supporting the database equivalent to the World
Wide Web and addressing interoperability in Web accessible Databases.

Example 1: PEER Federated System5

PEER [ATW+93, ATW+94] is an object-oriented federated information management sys-
tem designed and developed at the University of Amsterdam to support the management,
sharing, and exchange of heterogeneous information in a network of loosely/tightly coupled
nodes. Using PEER, each node in the federation network can autonomously decide about
the information that it locally manages, and which part of its local information it wishes to
export and share with other nodes. Each node can import information that is exported by
other nodes and then transform, derive and integrate (a part of) the imported information
to fit its interest and corresponds to the local interpretation. PEER is a pure federated
system; namely there is no need for a single global schema to be defined on the information
to be shared by different nodes, and there is no global control among the nodes.

The PEER integration infrastructure helps the human users in a cooperative team, by
supporting their information integration at different levels of granularity, e.g. to support

5More details related to the PEER federated system and its application in Waternet will be later provided
in Chapter 3.

24 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

the global task, or among different activities and sub-activities. The PEER system provides
an environment for the cooperation and information exchange among different nodes in a
network, where every node is composed of one server process and may consist of several
client processes.

The PEER information management strategy supports the sharing and exchange of
information among nodes, without the need for data redundancy and/or creation of one
global schema. Therefore, the problems of data consistency, referential integrity and update
propagation, and the need for a common glossary of concepts and definitions are eliminated.

As depicted Figure 2.9, every node in the PEER layer is represented by several kinds
of schemas; one local schema, a number of import and export schemas, and one integrated
schema.

• The local schema is the schema that models the information that is available and
stored locally within the node,

• The various imports schemas model the information that the node needs to access
from other local/remote nodes,

• The export schema models the information that a node wishes to make accessible to
other nodes, and

• The integrated schema presents coherent pool of information on all accessible local and
remote information.

LOCAL
SCHEMA

IMPORT
SCHEMA

1

EXPORT
SCHEMA

N

EXPORT
SCHEMA

1

IMPORT
SCHEMA

N

INTEGRATED
SCHEMA

Figure 2.9: Schemas Representation in PEER

Example 2: DIMS of PRODNET II

The European ESPRIT project PRODNET II (1996-1999) [CA 99] designs and develops an
open IT platform to support industrial virtual enterprises, with special focus on the needs
of Small- and Medium-sized Enterprises (SMEs). The PRODNET project provides a VE
support infrastructure, in which the involved SME companies are able to inter-operate and
exchange information in real time so that they can work as a single integrated organization,
while at the same time keeping their own independence and autonomy.

The proposed infrastructure for PRODNET II [GR 01], depicted in Figure 2.10, is com-
posed of three main components: the Internal Module (including the PPC and other en-
gineering modules), the Advanced Coordination Functionalities, and the PRODNET Co-
operation Layer (PCL). More details related to the description of different components of
PRODNET can be found in [GAH 01, FAG+00, KRS+99, CL 99, GCL 99, Sch 99, and OAB

2.2. A Taxonomy for Information Integration 25

99]. This section however, will give a brief description of the DIMS component of the PCL
layer, due to its relation with the subject of the thesis.

PPC
Production
Planning

and Control

Advanced

Coordination

Functionalities

 PCL - PRODNET Cooperation Layer

LCM

Workflow
Manager

DIMS
Distributed
Information
Management

System

PCI

Coordination Kernel

STEP

Module

EDI

Module

Config

Module

User

Interface
Engineering &

other internal modules

PCL

API

Internal
Module

C
oo

pe
ra

tio
n

L
ay

er

PR
O

D
N

E
T

C
om

m
un

ic
at

io
n

In
fr

as
tr

uc
tu

re

Figure 2.10: The PRODNET Reference Architecture

The DIMS (Distributed Information Management System) is responsible for modeling
and managing the exchange of all integrated VE cooperation-related information, while
preserving the autonomy and information privacy of the involved enterprises [GAH 01,
FAG+00].

DIMS DIMS Server Agent

Export
Schema
Manager

Export
Schema
Manager

Tool

DIMS
Kernel
Config.

Federated
Query

Processor

Other VCL Components

exp. schema
queries

export schema
info.

DIMS service requests/
VCL service answers

DIMS service answers/
VCL service requests

External Modules
(e.g. PPC, DBPMS)

DIMS service
requests/answers

DIMS service answers/
PPC service requests

federated queries/
query results

Internal DIMS Database Manager
(Local DB Schema)

export schema config.

internal data access internal data access

internal data access

config. data access

VCL
Integrated
Schema

Figure 2.11: General DIMS Architecture Approach

The general reference architecture for DIMS embodies the following components (see
figure 2.11):

• VCL6 Integrated Schema: provides a unified definition of both the local and the dis-
tributed VE information that can be accessed by end-users and applications at each
VE node. Other VCL components and external enterprise modules issue federated
database queries on this schema through the DIMS server agent, which takes care of
the interaction with the federated query processor, or with the local database schema.

• Export Schema Manager and Tool : encloses the functionality to create and maintain

6VCL: VE Cooperation Layer.

26 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

the hierarchy of export schemas that are defined on the VCL local schema, based on
the visibility of access that need to be specified for a given node.

• Federated Query Processor : transparently supports the access to data distributed over
the nodes of the VE network, taking into account the specific visibility access rights
(represented by export schemas) defined for every node.

• DIMS Server Agent : receives and dispatches all the DIMS service requests issued
by other VCL modules. The Server Agent first determines the nature of the service
requests and then triggers the activation of the involved DIMS internal components.

• Internal DIMS Database Manager : represents the server tier that provides the funda-
mental functionalities expected from a database management system including: trans-
action management, data storage and retrieval facility, stored procedures management,
SQL support, database triggers, etc.

• DIMS Kernel Configurator : allows the user to specify the configuration of certain
DIMS operation parameters (e.g. DIMS users and access security definitions (accounts
and passwords), Communication port number of DIMS server, and Timeout duration
for distributed queries).

Example 3: WebFINDIT a System for Querying Web Databases

WebFINDIT [BBO+99a] [BBH+99][BBO+99b] focuses on the design and implementation
of an architecture to support appropriate tools to manage the description of, location, and
access to data in the context of highly dynamic networks of information sources. It proposes
the use of flexible organizational constructs called coalitions and service links, to facilitate
data organization, discovery, and sharing among Internet accessible databases.

In order to achieve broad and flexible access to those remote information sources,
WebFINDIT provides the WebTassili as language that supports the definition and ma-
nipulation of information using two levels mechanism for Querying Web Databases. At
the meta-data level, users/applications can explore meta-information about a particular
database, while at the data level, they can query actual information stored in databases.
WebTassili also educates users about the information available and focuses here on those
aspects of the language designed specifically for locating information sources and educating
users. The WebTassili framework translates WebTassili queries to the native local languages,
and translates results from the native systems format to WebTassili.

The WebFINDIT prototype has been implemented using advanced object technology,
including CORBA as a distributed computing platform, Java, and Database Connectivity
Gateways to access native databases and to connect to databases. The combination of
technologies such as CORBA and Java offers a compelling middleware infrastructure to
implement wide-area enterprise applications, in which CORBA is used to provide a robust
communication infrastructure while Java is used to allow a dynamic deployment of the
system over the Web. Different database management systems7 have been used as a test-
bed for the prototype.

As shown in Figure 2.12 [BBO+99a], the WebFINDIT components are grouped in four
interactive layers:

1. The Query Layer gives users access to WebFINDIT services through two compo-
nents: the browser and the query processor,

7According to [BBO+99a], The actual WebFINDIT prototype interconnects 26 databases, which are
implemented using four different DBMSs: Oracle, mSQL, DB2, and ObjectStore.

2.2. A Taxonomy for Information Integration 27

2. The Communication Layer manages the interactions among WebFINDIT compo-
nents and mediates requests between the query processor and co-database servers,

3. The Meta-data Layer consists of a set of co-database servers that store meta-data
about the associated databases (e.g. information type, location, and coalitions).

4. The Data Layer has two components: databases and Information Source Interfaces
(ISIs). An ISI provides access to a specific database server by delivering requests from
the communication layer and retrieving results from the database.

Browser

ORB

IIOP

Query Processor

Intelligent Path Finder

ORB

ORB

IIOP

ORB

CORBA

Internet

Co-database
servers

Information
source interfaces

Database servers

Query Layer

Communication
Layer

Meta-data
Layer

Data Layer

Figure 2.12: WebFINDIT Components are grouped in four Interactive Layers

Discussion of the three Examples

In comparison to the main aspects of the approach suggested in this dissertation for infor-
mation integration, hereafter, we briefly discuss the three examples presented above. These
examples are discussed in accordance to the detailed requirements of distributed, heteroge-
neous, and autonomous sites, as described in section 1.1.

The PEER system uses its specific languages for modeling and querying the data, which
make the knowledge of PEER a must for every application participating in the federation
community. The fact that PEER is not based on standards, makes the process of learning
its languages and maintaining its applications a hard task that require appropriate skills
and expertise in the field. In addition, PEER by itself is a full DBMS that is required
to be used as the database management system for each application within the federation
community. In our opinion, a better approach to information integration must preserve the
involved systems with their existing DBMSs, and provide a higher level of integration that
logically links those DBMSs in a suitable manner.

The DIMS approach, proposed for PRODNET, provides in fact a comprehensive feder-
ated solution for a certain type of applications that cooperate together towards the achieve-
ment of a common and global goal of the VE. Within the DIMS approach of PRODNET,
users and their access rights are well defined, however, the heterogeneity issue of different

28 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

sites of the collaboration (e.g. legacy systems) is left to be resolved by the sites themselves.
In other words, different collaborative sites share a common data model and a common
query language.

WebFINDIT provides an architecture to manage and query data in the context of highly
dynamic networks of information sources. Similar to many other solutions, WebFINDIT
uses its specific languages for data coalitions and information retrieval, which also require
appropriate knowledge and expertise of these specific languages and modeling concepts. In
addition, users authentication and their access rights to the information sources are not
addressed to the required level. From the global architecture point of view, it seems that
WebFINDIT proposes a global solution to access data from external sources, rather than
providing an integration mechanism where different application can cooperate and share
each others data and services.

2.3 Further Classifications and Categorizations

In this section we evaluate some of the approaches for information integration based on two
classifications variant, namely, (1) a classification based on the developed approaches, and
(2) a classification based on the application requirements.

Approach Application
Area

Advantages Disadvantages

Distributed

Systems

Banking,
hospital chains,
etc.

Availability
Reliability

Off time updates at
central nodes,
Performance

Data Warehouse
Archiving,
statistics,
decision support,
and OLAP

Uniform access to data
Adequate performance
guaranteed at query
time

Updates need to be re-
flected
Data is accessed off-
line, so not up to date

Common Data
Definition Model

Archiving,
statistics, and
decision making

Uniform access to data
Data is always fresh

Hard to automate
Hard to maintain

Pair-Wise
Translation

Specific Applica-
tions

Well optimized Specific interfaces

General Feder-
ated Approaches

Business, and
scientific applica-
tions

Uniform access to dis-
parate databases

Visibility level is not
fully addressed

Node-to-Node
Federation

Scientific domains.
Business applica-
tions.

Full federation,
Good visibility level.
Data is not replicated.
Data is guaranteed to be
fresh at query time.

Hard to build and to
maintain.
Difficult to reach an
agreement.

Table 2.2: Approaches Evaluation based on the Developed Systems

Table 2.2 evaluates some of the approaches for information integration as developed
to fulfill the specific requirements in different application domains. It also outlines the
advantages and disadvantages of each approach. Therefore, the deployment of an approach,

2.4. Discussion 29

to be used by an application domain for their information management, is strongly based
on the specific requirements of every application. In addition, the final decision concerning
the approach to follow also rely on the evaluation and estimation of the gained benefits and
advantages against the sacrificed features, which relate to system autonomy, data freshness,
and information privacy.

In Table 2.3, we classify the application domains into four categories of Chain Sys-
tems, Data Archiving and Cataloguing, Data Publishing, and large scale Applications. The
classification, which is based on the main characteristics of each application domain, also
determines the application type and provides examples of these applications.

Application
Type

Approach Characteristics Examples

Chain

Systems

Distributed
Systems

Similar environments at geographically
distributed sites.
Applications may use similar data mod-
els and management systems.
Data is susceptible to change.

Banking, hospitals,
supper-markets,
and insurance
organizations.

Data Archiv-
ing and

Cataloguing

Centralized
Databases

Data is gathered from different sources
in order to be archived and used by a
third party (service).
Archived data is not susceptible to
change frequently.
Archives are usually copyrights pro-
tected.

Scientific results,
Biology, reference
databases, and
product informa-
tion.

Data

Publishing

Data

Warehousing

Data is collected from distributed
sources, cleaned, filtered, and integrated
into one format.
Data is susceptible to change and the
new updates need to be reflected.

Data mining, and
On-line Analy-
sis Processing
(OLAP).

Large scale
Applications

Federated
Systems

Data needs to be accessed from different
remote resources.
Data needs to be fresh.

Science environ-
ment, health care,
business, and
industry.

Table 2.3: Approaches Evaluation based on the Application Requirements

2.4 Discussion

Several approaches, among the ones presented in this chapter, address the main aspects of
multidatabase systems. Namely, heterogeneity, distribution, and autonomy are addressed
with a certain level of details. However, the requirements of today’s applications are more
complex than what is provided, more precisely:

• Distribution must be addressed in a manner were data remains at its originating
source while access to it is gained on-line, when needed and in the requested format.
Under the normal consideration, up-to-date data must be gathered from multiple dis-
parate data sources.

• Heterogeneity must be supported at the level of data representation (including se-
mantic and syntactic heterogeneity) and at the level of DBMSs (e.g. relational model,

30 Chapter 2. Information Integration Approaches, Mechanisms, and Tools

CODASYL network model, object-oriented model, and flat files).

• Each system within the collaboration community must fully preserve its local auton-
omy in terms of controlling its information management.

• The import/export of information at each node must be well controlled and very
flexible. A node must be able to define as many export schemas as required by different
applications. Each export schema shall represent the part of local information the
node wishes to make available for other specific applications. Similarly, a node shall
import as many import schemas as needed from its different applications; moreover,
information is imported in the format desired by the requesting applications.

• Bilateral agreements need to be established between the members of a collaboration
network in order to define the information to share, the manner to access it, and the
circumstances under which the shared information will be used.

In addition, generally most of the proposed approaches lack the means for generalization
and only address specific domain-dependent cases. Adding a new site to the cooperation
requires considerable expertise and effort in order to interface it with all communicating
systems. Thus, support for applications extensibility and evolutions are not guaranteed
in most of these approaches. For instance, the PEER federated system provides a loosely
coupled federated environment where autonomy is preserved, users visibility rights are sup-
ported, and its federated schemas are well defined. However, the existing implementation
of PEER requires that, for their interaction/cooperation, all the nodes (agents) within the
federation community use the same data model (the PEER model) and the same query
language (PEER language) in their “cooperation layer”. Similarly, WebFINDIT proposes
an architecture that allows dynamic couplings of Web accessible databases using a common
data model and a common query language called WebTassili. Thus, for both systems, ex-
pertise is required to build cooperation layers when initiating a new collaboration network
or extending the existing federated nodes to support new members.

The approach we propose in chapter 6 is mainly based on and extends the PEER archi-
tecture in defining the type of information managed by each node (namely local, import,
export, and integrated schemas). In addition, the approach allows different applications to
follow widely understood formats and common languages for modeling and querying the
data. Further, it preserves all application’s autonomy and builds a federated layer on top
of each application. Different than the original development of the PEER database system,
the information integration approach, proposed in chapter 6, supports the inter-nodes com-
munication based on the usage of middleware solutions and standards; namely, ODL for
schema definition, OQL for query formulation, and XML/OIF for data exchange. Moreover,
the solution we propose can be considered as a higher abstract level that is used to inter-
connect different information sources, rather than being a new DBMS intending to replace
the existing DBMSs in all networked applications.

Chapter 3

WATERNET: Intelligent
Supervision and Control in
Heterogeneous and Distributed
Application

This chapter describes the design and implementation of the Waternet integrated/federated
environment, which allows the coupling of distributed, heterogeneous, and autonomous sub-
systems in the water distribution/management system [ABH 98a, ABH 98b]. The Waternet
ESPRIT IV project (No. 22.186), aims at developing an evolutionary knowledge capture
and an information management system. Waternet supports the control, optimal operation,
and semi-authorized decision making for drinkable water distribution networks.

The main goal of the Esprit project Waternet is stated as Knowledge Capture for Ad-
vanced Supervision of Water Distribution Network. It involves: the development of several
different subsystems and their integration into a coherent environment, in which they can
easily access and exchange the information they need. In order to support the requirements
of advanced distributed control and management of water distribution networks, there is a
need to develop a strong interoperable information management system. The interoperable
information management system supports the cooperative heterogeneous subsystems with
their exchange and management of large amount of data.

The Development of the Waternet information management system is based on the use
of the PEER federated system. PEER provides basic means for information integration and
interoperation among heterogeneous systems without the need for data redundancy or repli-
cation at multiple sites. The information management framework for Waternet, presented
in this chapter, is augmented with the development of adapters serving the need for system
flexibility and openness. Therefore, adapters facilitate the insertion of new components to
the system. Our contribution to the Waternet project consisted of:

☞ Analysing the requirements of the Waternet subsystems (units) and the design of the
database structure and communication mechanisms for their managements of infor-
mation. Waternet units included: supervision, simulation, optimization, water quality
management, and machine learning. These other units in the Waternet system were

31

32 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

developed by other partners of this project. The complete list of partners included: ES-
TEC, UNINOVA, SEBETIA, WBE, University of Amsterdam, ADASA, Smas-Sintra,
Universitat Politecnica de Catalunya, University of Naples, and ALFAMICRO.

☞ Development a strong integration system for distributed information management to
properly support the data exchange and information sharing among the different units
of the Waternet system.

Our design and development of the innovative integration architecture and framework
achieved within the Waternet project, present an implementation prototype of a federated
environment, which allows different subsystems of a typical water company to work in col-
laboration. Regarding the information management approaches presented in chapter 2, the
Waternet framework can be considered as an implementation prototype of the node-to-node
federation, in which import/export schemas are well defined and node autonomy is pre-
served. The designed approach although addressing the Waternet requirements in specific,
is generalized enough to be applied to other complex application environments, that involve
the interoperability among heterogeneous and autonomous subsystems.

3.1 Introduction

Water supply industries nowadays lack a global overview of the status of the production
and the water distribution system. Distinct functionalities required in this industry, e.g.
optimization, water quality, etc. are supported by independent, heterogeneous, and au-
tonomous subsystems. Each subsystem performs its specific activity, but their co-working
and complex information exchange needs to be properly supported. Typically, there is none
or little coordinated control in order to assure a continuous supply of water with a better
quality monitoring, minimize the costs of exploitation, meet the quality standards, save en-
ergy consumption, optimize pipeline sizes, and reduce wastes. Furthermore, these systems
are heterogeneous and of different levels of automation and reliability.

The main focus of the WATERNET project is two-fold: (1) the development of several
subsystems performing the necessary functionalities (i.e. the supervision, the simulation, the
machine learning, the models manager, the optimization, the remote unit, and the water
quality); and (2) the integration of these subsystems into a coherent environment, in which
the subsystems can easily access and exchange the information they need from the other
subsystems, in order to function properly.

The integration/interoperation architecture designed for WATERNET, involves the de-
velopment of Distributed Information Management system (DIMS) for every subsystem, that
provides all mechanisms necessary for such interactions among the subsystems. Considering
the fact that the DIMS plays the role of the interlocutor/integrator among all other subsys-
tems, its implementation must reflect the inter-operation requirements specific to the design
of WATERNET system and its subsystems. The two main requirements to be considered
involve:

1. The need for provision of the information produced by every subsystem, for access by
any other subsystem.

2. The general requirements of “openness and flexibility” to support the WATERNET
system life cycle.

Subsystems in Waternet cooperative environment are independent and autonomous mod-
ules developed by different individual partners within the community. The best approach

3.2. Water Environment and General application requirements 33

to support point (1) above, while preserving subsystem autonomy, is the federated database
approach. The PEER federated database system is used for the integration of subsystems’
information through their DIMSs, and properly supports this point. The PEER federated
information management system developed by the CO-IM1 group of the University of Am-
sterdam is used for the development of the Distributed Information Management System
(DIMS) layer for every subsystem in the WATERNET environment. The federated schema
management of PEER [TA 93] employs a common means for information representation;
namely, a common object-oriented schema representation that acts as the “mediator” rep-
resentation of all existing information within the subsystems.

In order to support point (2) of openness above however, in addition to the federated
information management, we have chosen an integration mechanism and approach, that de-
velops Data Adapters for every subsystem. The primary role of Data Adapters is to provide
specific interfaces for the input/output data used by every subsystem program from/to the
information representation in the common mediator schema in its DIMS. This mechanism in
turn supports the openness of the system as an environment, to which different functionali-
ties can be simply added or removed, as required by any cooperative environment, in order
to adjust to its specific needs.

This chapter first briefly describes the WATERNET infrastructure and its main compo-
nents and then addresses the architecture and mechanisms developed for the information
integration in WATERNET system. Furthermore, the chapter describes how the integration
architecture supports the required openness, flexibility, and future expansion requirements
for the water management systems. In order to provide a better view of how the information
is represented and exchanged between PEER nodes, several examples are provided in the
chapter. These examples show how the information that is stored for a given subsystem,
can be imported and used by another subsystem within the cooperating network.

The remainder of this chapter is organized as follow. Section 2 addresses the description
and analysis of the water management environment and presents the logical architecture
for the water supply network. Section 3 describes the information management approach
and designs the federated architecture for Waternet system. A general and open implemen-
tation framework for the distributed WATERNET system is described in section 4. This
framework includes a brief description of the PEER distributed/federated system. Section 5
describes the main integration architecture of WATERNET supported by the PEER feder-
ated system, in which the information sharing and data exchange is supported through the
integrated schema; in this section, an extensible integration approach supporting systems
flexibility and application modularity through the use of the “adapter” components is also
presented. Finally, section 6 concludes the chapter and enumerates the major characteris-
tics and benefits of the extended federated integration/interoperation approach developed
for the WATERNET system.

3.2 Water Environment and General application re-
quirements

Water industries today require the cooperation of heterogeneous subsystems (also called
units in this document). Each subsystem, e.g. optimization, water quality, simulation,
supervision, machine learning, etc. performs a distinct function and their co-working and
information exchange are of complicated nature. In principle, a number of activities may

1Cooperative Information Management Group (http://www.science.uva.nl/~netpeer).

34 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

be assumed by every subsystem. Clearly, the number of units and the complexity of every
system depend on the size and functionalities of the water industry. In Europe, water
industries constitute a wide range, for example as small as a company where all modules
run on a single system that is located in the control room of its headquarter, or as large as
a water company with geographically distributed control, processing, and distribution sites.

Independent of the size, water companies today lack a global overview of the status of
production and of the water distribution network. Control of such systems, is often carried
out locally, based on the operators’ experiences. Typically, there is none or little coordinated
control, that is needed to assure a continuous supply, meet the quality standards, save energy,
optimize pipeline sizes and reduce wastes [URB 97].

A good System analysis begins by capturing the requirements of an application, and
modeling the essential elements in its environment. To support the requirements of complex
applications, such as Waternet, the information management system must deal with hetero-
geneous sources of information from geographically distributed sites. The interconnection
among the cooperating nodes is established through a variety of wide area (WAN) and local
area (LAN) networks, in which a node (agent in the community) may need to access, in run
time via remote queries, one or several sources of information in other nodes’ data sources.
In general nodes can be independent and self-serving with a large variety of data that they
generate and handle. Therefore, any assumption in the direction of centralization and repli-
cation of data or unification of data descriptions (schema) in different nodes is unrealistic.
Namely it is preferred to have no global schema or redundant storage of data in the network.

Subsystems involved in water management system are heterogeneous and geographically
distributed. In this network, every subsystem constitutes one such unit. Every unit serves
a specific function in the integrated system and thus units are intrinsically of different kinds
[BA 98b, BAG 98].

Request

Advice

Command
External Unit-k

Auxiliary Units

Communicat ion Layer

Remote UnitsControl Unit

Data
Data

Report
Communicat ion LayerCommunicat ion LayerCommunicat ion Layer

Figure 3.1: Logical Units for the Waternet System architecture

Through the analysis of the existing water supply and management networks [BAG
98] we have identified and classified the heterogeneous and distributed water management
subsystems into four categories of units, namely: Control Unit, Remote Unit, Auxiliary Unit,
and External Unit (see Figure 3.1):

① The Control Unit performs some central supervision and control of the water supply
and distribution system. Usually, under the normal conditions, the Auxiliary Units
can only “suggest” certain actions to the Control Unit, but the latter will make the
final decision.

② The Remote Unit represents the concept of a site where the information is gathered
from a set of sensors and control devices.

3.2. Water Environment and General application requirements 35

③ The Auxiliary Unit is a unit that complements the work of the Control Unit with
other functionalities. Examples of Auxiliary Units include the machine learning unit,
simulation unit, optimization unit, and water quality monitoring unit. These units
will read the information from the Remote Units and/or the Control Units, and give
the proper feedback in terms of certain suggestive actions (commands or parameter
modifications) in order to achieve a better performance.

④ The External Unit is a unit that typically functions outside the water management
system, but needs to be accessed to provide some information and/or services. Exam-
ples of external units can include: the geographic information systems that could be
provided by some services provider, the companies that can perform water network
device maintenance, and the centers that can collect users complaints.

3.2.1 Water Network Structure and Management

Existing systems for control and monitoring of water production and distribution are het-
erogeneous and of different levels of automation and reliability. In such a cooperative en-
vironment, the proper functionality of all subsystems involved in the water control system
depends on the sharing and exchange of data with other subsystems. Typically, direct con-
nection between these subsystems is none existent or at best exists as point-to-point, where
the exchanged information for example consists of documents, phone calls, and electronic
mails. Some earlier publications address the problem of developing an infrastructure and/or
mechanisms to support the systematic sharing and exchange of information [URB 97, Wang
97, CQ 97], but the suggested solutions still lack a coherent environment to provide a global
overview of the status of water production and the water distribution, an integration strat-
egy for the considered subsystems and their activities, and support for the openness and
flexibility requirements [AWH 94].

Figure 3.2 illustrates an example of a real water environment as designed and validated
by the Waternet partners. In such an environment, the Waternet units mentioned above
(control unit, remote units, and auxiliary units) are interconnected through a communication
Intranet network via an Application Program Interface (API) that ensures data exchange
and data security. Each unit (node) in the system has the full autonomy on its local data,
can export a part of its local information, and can import some information that is exported
by other nodes.

Following are the different kinds of subsystems that are considered necessary for the
development of the WATERNET system [BAG 98]:

1. Remote Unit Subsystem: remote unit represents the concept of a site where the
information is gathered from a set of sensors and control devices, and some local
control is executed. Every remote unit keeps track of the local information of the site
(basically device information, status readings, alarm events, and commands) and is
able to handle some local events by itself.

2. Supervisory Subsystem: supervisory element performs some central supervision
and control of the water supply and distribution system. In some cases, there could be
only one supervisory subsystem in the network, but then some level of fault-tolerance
needs to be implemented. However, it is also possible to have multiple supervisory
systems distributed along the network. Usually, under the normal conditions, only
the supervisory system makes the final control decisions in the system to modify the
behavior of a Remote Unit. In this case, the other units (e.g. simulation, optimization,

36 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

etc. described below) can only “suggest” certain actions to the supervisory system,
but the latter will make the final decision at the end.

Radio link

Servers

Other Systems

Remote Unit

Leased or
Dialed Lines

Remote Unit

Remot
Unit

Communication
Processor

Other
Connections

Supervisor

Simulation

Local Data

Optimization

Local Data

Machine Learning

Local Data

Water Quality

Local Data

Real Time Values

 Local Area
Network

Figure 3.2: Water Management Environment

The functionalities of the supervisory system include:

a- Planning: planning is a daily process that allows a supervisor at the control
headquarter to define the set of actions (production plans) to be taken for the
coming hours, days, or weeks. The production plans are executed at fixed sched-
ules and according to the set of pre-defined steps of each action. Planning also
includes the set of parameters to be kept in the network and their range of values.
In order to achieve a good water supply, two sets of results, described below, can
be used: the water demand forecast generated by the Machine Learning subsys-
tem and the optimized strategy proposed by the optimization subsystem.

b- Controlling: controlling is the main regulatory task of the water management
network, it focuses on three operations: choosing a plan and making it the prac-
tical strategy for remote units, manipulating the devices, and adjustment of set
points. Such a process allows to recognize failures in the system, to identify the
non-optimized operations, and to take the proper recovery actions.

c- Monitoring: monitoring is an important process in water distribution network
since it watches at the system by reading values of all devices and checks if every-
thing runs properly (parameters should be within the defined range limits, default
values, rules checking for pressure, level, flow, etc.). The monitoring system can
monitor all remote units for the company regarding their actual running sta-
tus and collected information, periodic readings of network devices, alarms, and

3.2. Water Environment and General application requirements 37

the sensor values about the pressure, flow, and quality for all remote units. The
monitoring interface supports the browsing of Network Current Status, Historical
Data, and Graphic Display of the device information and statistical analysis.

d- Alarms Handling: once an alarm is detected it will be presented to the system
supervisor at the control room, who shall then make an expert decision on how
to react properly. In this case the knowledge/rules extracted by the Machine
Learning subsystem (described below) can be used in order to help the supervisor
to react properly, taking the suggested rules into consideration [CM 99].

3. Simulation Subsystem: simulation assists the operator if he/she decides to look
forward in time (e.g. for a few hours) to spot potential problems that can develop if
the network is not monitored aggressively. Finding such problems can be supported
through the use of the most up-to-date consumption forecasts for the network. In this
case, the simulation process looks at what will happen during the next hours, with
the goal to spot the eventual problems before they actually develop and occur, a set
of simulated network results will be produced by this subsystem and presented to the
supervisory system

4. Machine Learning Subsystem: that complements the work of the supervisory
subsystem by other functionalities [CM 97]. Two activities are supported by the
machine learning subsystem.

a- The Knowledge Extractor process that uses the network model information and
the historical data for knowledge and rules extraction, in order to be used by the
supervision system for an advanced monitoring of the system.

b- The Water Demand Forecasting process that needs to extract some knowledge
to be used in forecasting future water demand, and giving information on how
the network is evolving. Its objective is to predict the water consumption for a
region of the network in the near future [CM 99].

5. Optimization Subsystem: optimization in the water networks refers to the opti-
mized operational strategies for the elements controlling water transfer in the network
such as the pumps or valves related to cost, quality, etc. The optimized operational
strategies are based on the forecast of future demands over the time horizon using a
simplified model of the water network’s dynamic behavior.

6. Water Quality Subsystem: quality in the water management comprises a large
set of parameters, however the most important are related to the quality of supply
(pressure, flow, continuity, etc.) and biological characteristics. The quality monitoring
process gets actual values of the sensors for quality measurement from the supervision
system and then it generates a list of possible abnormal situations for which a set of
alarms will be generated and presented to the supervisor at the control room.

7. Other External Subsystems: external subsystems may run outside the water man-
agement system, while they are needed to be contacted in order to provide informa-
tion/services necessary for water distribution. For instance, the geographic information
systems and/or the water network maintenance systems that can be contacted by the
supervisory subsystem or others, when their information/services are required.

38 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

3.3 Information Management Approach

In water supply and distribution network, typically the information about the water charac-
teristics and network devices, is gathered in remote units and processed at different stages
of network simulation, network behavior learning, strategy optimization, and water qual-
ity checking. Furthermore, the proper planing and strategies for water management and
processing untreated water are achieved under the supervision of the system supervisor.

Units involved in the water control network (e.g. supervision, simulation, optimization,
machine learning, and water quality) function properly if and only if they can access the
information produced by other units. Therefore, the sharing and exchange of information
among subsystems must be properly supported, while the proper independence and auton-
omy of the units needs to be also preserved. For instance, the control unit, or an external
unit, are autonomous units, while the remote unit has only partial control over its function-
ality and takes orders from the Control Unit. Similarly, the heterogeneity of information
representation in different units and its varied classification needs to be supported. In gen-
eral, the same piece of information is viewed differently by two units, and different levels of
details can be associated with it [URB 97, RPR+94, SP 94]. The database schemas involved
in the definition of the Waternet subsystems are described in details [BAG 98].

Some earlier publications have addressed the problem of data representation and infor-
mation modeling for the operational control of water distribution systems [Wang 97, CQ
97]. However, they mostly lack a comprehensive approach that involves the entire set of
components and their activities, and takes into consideration the distribution and evolution
of the system. In general, subsystems are independent and self-serving, with a large variety
of data that they generate and store. Therefore, any assumption of centralization, replica-
tion, or unification of data descriptions in different subsystems (through one global schema)
is unrealistic. It is preferred to have no centralized global schema or redundant storage of
data within the entire network.

3.3.1 The Waternet Architecture

In order to support the complex information management requirements in water environ-
ments and their applications, we have designed a comprehensive architecture for the Wa-
ternet system. Within this Architecture, presented in Figure 3.3, the integration among
components and their information exchange is clearly defined and represented. Some earlier
publications address the problem of data representation and data modeling for the oper-
ational control of water distribution systems [Wang 97, CQ 97]. But, they mostly lack a
comprehensive approach that involves the entire set components and their activities, and
takes into consideration the distribution and evolution of the system.

The information management architecture of the water network illustrated in Figure 3.3
is a general and comprehensive architecture that supports the autonomy and heterogeneity
of information representation in all sites involved in the water management. In practice, the
case of every water company is different and may require only a subset of this comprehensive
and open architecture. Here the purpose is to define an architecture that is capable of
handling an advanced federated control network.

The DIMS (Distributed Information Management System) is augmented with every unit
in the network in order to support the capability of information sharing with other units
in the Waternet network in a transparent way. Therefore, the DIMS layer ensures the run-
time access to information stored in other subsystems (via remote queries). The DIMS

3.3. Information Management Approach 39

information management is supported via the federated schema facilities and the federated
query processing of PEER. Moreover, DIMS extends the PEER approach with the data
adapters mechanism, in order to better support the information exchange between the PEER
system and the specific information systems used at each unit in Waternet (see section 3.5.1).

operative model

plan

cmds
Simul.

Network

physical network

validated plan

qualitative model

current status

Plan

Simulation
(AU) DIMS

PEER

Models
Manager

(AU)

DIMS
PEER

Machine
Learning

(AU)

DIMS
PEER

Supervision
(CU) DIMS

PEER

Optimization
(AU) DIMS

PEER

Water
Quality

(AU)

DIMS
PEER

Water_Forecast

Water_Forecast

current status/

current status/
historical data

Physical network

current status/
historical data

physical network

alarms

Knowledge/rules
Simul.

Network

Knowledge/rules

CU: Control Unit
AU: Auxiliary Unit
RU: Remote Unit

Remote
Units
(RUs)

DIMS
PEER

Set points Remote unit info.

quality info.

quality info.

Figure 3.3: Information Management Architecture for the Water Network in Terms of Units

The federated schema definition facilities provide the capability of information sharing
with other units in a transparent way. This also implies that every such unit can handle
different kinds of information: the information which is going to be stored locally, the
sharable information for public access, and the information which needs to be imported from
other units. Consequently, through the federated query processing, from the user point of
view the access to physically distributed information along the network is the same as a local
access. In general, the Control Units and Auxiliary Units may retrieve the information from
other different sites, and are in some cases able to provide suggestions/strategies to improve
the behavior of the Remote Units and Control Units. Every unit will read the information,
which is required from the other units, at the time that is needed. Therefore, the information
that is accessed from other units is always up-to-date and there is no repetition of information
among the units in the network.

3.3.2 Simple Scenario for Subsystems interaction

The WATERNET system operation requires a real cooperative environment in terms of
the integration and the exchange of information between different subsystems. In order to
give the reader an overview on the complexity of the interactions between the WATERNET
subsystems, for data sharing and some results validation, a simple scenario for the process
involved in developing an optimized strategy is presented in this section.

The cooperative work required to develop an optimized strategy can be considered as ”a
part of the bigger cooperative environment required every day”, to identify many operations
to be carried out the next day. As depicted in Figure 3.4, the cooperative process needed for
the simple scenario involves the optimization, machine learning, simulation, water quality,

40 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

and the supervision subsystems. The steps involved in the execution of the scenario are
described below:

• First, in order to generate a management plan for the next day operation of the
network, the Optimization asks the Supervision for the network devices information;
asks the Machine Learning for the forecasting results; and asks the Models Manager for
the operative model. The management plan generated by the optimization subsystem,
primarily consists of a sequence of commands to be performed at specific times on the
network, e.g. opening a valve at 2 AM, stopping a pump at 5 PM, and so on.

• Second, the Simulation and the Water Quality subsystems are invoked by the opti-
mization. These two subsystems must access the generated plan information from
the Optimization subsystem, perform some processing and give their feedback about
the consequences of the generated plan on the ability of the system to support the
proposed plan and/or how this plan affects the quality of the water.

• Third, the Optimization subsystem needs to access both the Simulation and the Water
Quality subsystems, in order to check their evaluation results of its earlier generated
plan and in order to decide either to recommend the plan to the Supervision as an
optimized plan or to reject it. If the plan is rejected, the whole process described
above needs to be restarted to develop and test a new plan. Otherwise, the plan
will be approved and presented to the supervisor for acceptance. If accepted by the
supervisor, the plan will be loaded at the remote units by the system supervisor at
the control room; otherwise it will be canceled and re-planing starts again.

DIMS

Models Manager

DIMS

Remote units (RUs)

Simulation
DIMS (AU)

DIMSMachine L.

(AU)

Operative Model

Historical Data

Forecast Results

DIMS

Supervision (CU)

Optimization
DIMS

(AU)

Network
Devices

Water Quality
DIMS

(AU)

Evaluated Plan

Optimized
Plan

Optimization Plan

Figure 3.4: Simple Scenario for Subsystems Interaction in Waternet

3.4 Distributed Information Management System (DIMS)

In the general architecture, as presented in Figure 3.3, every component of the WATERNET
system being a remote unit, a control unit, an auxiliary unit, or an external unit, constitutes
a PEER node. In principal, one unit can either run on an individual workstation (or PC),
or several units can run on the same system. The PEER system and the development of
the PEER federated layer for DIMSs are further described in this section.

3.4. Distributed Information Management System (DIMS) 41

3.4.1 The PEER Federated Layer

The PEER system provides an environment for the cooperation and information exchange
among different nodes in a network, where every node is composed of one server process and
may consist of several client processes. The federated schema management and the federated
query processing of PEER [AWT+94] support the sharing and exchange of information
among nodes, without the need for data redundancy and/or creation of one global schema.
Therefore, the problems of data consistency, referential integrity, and updates propagation
are eliminated.

The federated schema management of PEER organizes four different kinds of schemas
for every node (Figure 3.5). The local data at the node is defined by the schema called LOC.
Every node can create other several schemas called exported schemas (EXP), to represent a
part of its local schema (LOC); and only authorized users at remote nodes can access data of
this node through some EXP schemas. The authorized nodes can import the EXPs of other
nodes that will be called imported schemas (IMP). The imported schemas (IMPs) are then
merged with the LOC to build the integrated schema (INT) for the node. Hence, every node
in the federated community can access both its local and the remote information (from other
nodes) through its INT schema, as if all the data is local information. At the same time,
the physical and logical distribution of information becomes completely transparent to the
users. The four kinds of schemas for the subsystems are defined using the SDDL (Schema
Definition and Derivation Language) of PEER [TA 93]. Several examples of these schemas
defined for the WATERNET subsystems are included and described in earlier publications
[ABH 98b, BAG 98].

Subsystem A
Application
Programs

Integrated
Information

INT

Local

Information

LOC

PEER schema
Management

Exported nformation

PEER
Federated Layer

F e d e r a t e d
Q u e r y

P r o c e s s i n g

D I M S

N e t w o r k
C o m m u n i c a t i o n M a

n a g e m e n t

Imported
Schema-1

IMP-1

Imported
Schema-n

IMP-n

Exported
Schema-1

EXP-1

Exported
Schema-m

EXP-m

Imported Information

Figure 3.5: PEER Federated Layer Representation

The PEER layer development for every unit, supports the following features:

• Integration and filtering of information accessed from a set distributed units.

• Support for local autonomy and heterogeneity at every unit.

• Access to updated data with no redundancy of stored information.

42 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

• Flexible support for potential network expansion with new functional units.

• Differences in data structures, modeling approaches, and objects naming in different
nodes are solved through the definition and derivation of the integrated schema.

3.4.2 Schemas Management in WATERNET Using PEER

To provide a better idea about the information that is represented and exchanged between
PEER nodes, simple examples are provided below. In general, these examples show how
different pieces of information that are stored at a given node, can be imported and used by
another different node. What is represented in these examples is a small part of the PEER
schemas developed for certain units in the implementation of the Waternet system. The
definition of the schemas in these figures is based on the use of the Schema Definition and
Derivation Language SDDL of PEER [ATW+93, AWT+94].

Table 3.1 shows a part of the LOC schema of the Control Unit CU. In order to export
some information from the CU to the auxiliary Units (or in general, to any other unit),
one or more export schemas need to be defined at the CU node. The export schema EXP1
defined at CU (Table 3.2) contains network devices information in Nodes (subtypes E Tank
and Reservoir) and Devices (subtypes Pipe, Group, and Valve) types. This information is
derived from the LOC schema of CU and due to the preference of the autonomous CU node,
it is defined rather differently than in the corresponding LOC schema type definition. For
instance, the type Head Dep(ending) is not exported in EXP1 from the local schema of CU,
as well as several attributes such as low level alarm and high level alarm in Tank and broken
in Network Devices.

define_schema LOC type NETWORK_NODES
code_, site_code_: STRINGS
coord_x, coord_y, coord_z: REALS
outflow: INTEGERS

type TANK subtype_of NETWORK_NODES
area: STRINGS
low_level_alarm, heigh_level_alarm: REALS
weir_elevation: INTEGERS
inflow: REALS

type RESERVOIR subtype_of NETWORK_NODES
type HEAD_DEP subtype_of NETWORK_NODES

coef_discharge: REALS
type NETWORK_DEVICES

start_node, end_node: NETWORK_NODES
discharge: REALS
broken: BOOLEANS

type PIPE subtype_of NETWORK_DEVICES
pipe_length, pipe_diameter: REALS

type GROUP subtype_of NETWORK_DEVICES
power: REALS

type VALVE subtype_of NETWORK_DEVICES
open_time, close_time: DATE

end_schema LOC

Table 3.1: Simple Network Local Schema in Control Unit Node.

Other attributes have been exported, sometimes with different names or under different
types (i.e. a subtype). Thus, through the attribute transformation, it is possible to export
information with a different representation that is more simplified to better support other

3.4. Distributed Information Management System (DIMS) 43

units’ purposes. Table 3.3 and Table 3.4 represent two schemas in the optimization unit,
and in a specific its LOC schema and the IMP7 from the Control Unit (CU) respectively.

Derive_schema EXP1 From_schema LOC
type NODES

code_id: STRINGS
code_site: STRINGS
x, y, z: REALS
flow: INTEGERS

type E_TANK subtype_of NODES
hq2: STRINGS
elevation: INTEGERS
inflow: REALS

type RES subtype_of NODES
type DEVICES

start_node: NODES
end_node: NODES
discharge: REALS

type PIPE subtype_of DEVICES
pipe_length, pipe_diameter: REALS

type GROUP subtype_of DEVICES
power: REALS

type VALVE subtype_of DEVICES
open_time, close_time: DATE

derivetion_specification

NODES = NETWORK_NODES@LOC
code_id = code_@LOC
code_site = site_code_@LOC
x = coord_x@LOC
y = coord_y@LOC
z = coord_z@LOC
flow = outflow@LOC

E_TANK = TANK@LOC
hq2 = area@LOC
elevation= weir_elevation@LOC
inflow= inflow@LOC

RES = RESERVOIR@LOC
DEVICES = NETWORK_DEVICES@LOC

start_node = start_node@LOC
end_node = end_node@LOC
discharge = discharge@LOC

PIPE = PIPE@LOC
Pipe_length = pipe_length@LOC
Pipe_diameter = pipe_diameter@LOC

GROUP = GROUP@LOC
Power = power@LOC

VALVE = VALVE@LOC
Open_time = open_time@LOC
Close_time = close_time@LOC

end_schema EXP1

Table 3.2: Simple Network Export Schema (EXP1) in Control Unit Node

define_schema LOC
type OPT_VALVE

device_code: STRINGS
site_code: STRINGS
min_flowrate: REALS
max_flowrate: REALS
min_position: REALS
max_position: REALS

type OPT_PIPE
opt_coeff: REALS

type OPT_GROUP
opt_coef: REALS
min_pos: REALS
max_pos: REALS

type OPTIMIZATION_NODE
opt_name: STRINGS
opt_address: STRINGS

end_schema LOC

Define_schema IMP7 same_as_export_schema
EXP1 from_agent Control_Unit
type NODES

code_id, code_site: STRINGS
x, y, z: REALS
flow: INTEGERS

type E_TANK subtype_of NODES
hq2: STRINGS
elevation: INTEGERS
inflow: REALS

type RES subtype_of NODES
type DEVICES

start_node, end_node: NODES
discharge: REALS

type PIPE subtype_of DEVICES
pipe_length, pipe_diameter: REALS

type GROUP subtype_of DEVICES
power: REALS

type VALVE subtype_of DEVICES
open_time, close_time: DATE

end_schema IMP7

Table 3.3: Simple Local Schema (LOC) Table 3.4: Simple Imported Schema (IMP7)

44 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

The Optimization Unit will access some up-to-date and current information from the
Control Unit through the import schema IMP7. An import schema (IMP) always has the
same structure as the definition of its corresponding export schema (EXP) at its origin. For
every import schema, the name of the node and the name of the export schema from that
node are specified.

Finally, as shown in Table 3.5, the Optimization Unit will define an integrated schema,
derived from its local schema and other imported schemas, such as IMP7, using some types
and maps derivation operators (e.g union, restrict, substract, rename, threading, etc. from
the SDDL language of PEER). However, for simplicity reasons, here the examples only
show the UNION operation. The INT schema represents the proper database view for
the optimization applications and optimization programs. Once the integrated schema is
defined and created, the user at the Optimization node can formulate his queries against
this global and complete schema that represent an overview of all the information accessible
from this site. Based on the integrated schema definition, when a query arrives, it will
be decomposed into several sub-queries, each related to a different remote node where the
needed information is available. The result from different remote queries will then be merged
with the local one and then presented to the user as a coherent response for his request.

Define_schema INT from LOC, IMP7
Type OPTIMIZATION_NODE

opt_name: STRINGS
opt_address: STRINGS

type NODES
node_id: STRINGS
node_site: STRINGS
x, y, z: REALS

type ARCS
start_node: NODES
end_node: NODES
discharge: REALS

type OPT_VALVE subtype_of ARCS
open_time: DATE
close_time: DATE
min_flowrate: REALS
max_flowrate: REALS
min_position: REALS
max_position: REALS

type OPT_PIPE subtype_of ARCS
pipe_length: REALS
pipe_diameter: REALS
opt_coeff: REALS

type OPT_GROUP subtype_of ARCS
power: REALS
opt_coef: REALS
min_pos, max_pos: REALS

derivation_specification

OPTIMIZATION_NODE = OPTIMIZATION_NODE@LOC
opt_name = opt_name@LOC
opt_address = opt_address@LOC

NODES = UNION (E_TANK@IMP7,RES@IMP7)
node_id = code_id@IMP7
node_site = code_site@IMP7
x = x@IMP7
y = y@IMP7
z = z@IMP7

ARCS = UNION (PIPE@IMP7,GROUP@IMP7,VALVE@IMP7)
start_node = start_node@IMP7
end_node = end_node@IMP7
discharge = discharge@IMP7

OPT_VALVE = UNION (OPT_VALVE@LOC,VALVE@IMP7)
open_time = open_time@IMP7
close_time = close_time@IMP7
min_flowrate = min_flowrate@LOC
max_flowrate = max_flowrate@LOC
min_position = min_position@LOC
max_position = max_position@LOC

OPT_PIPE = UNION (OPT_PIPE@LOC,PIPE@IMP7)
pipe_length = pipe_length@IMP7
pipe_diameter = pipe_diameter@IMP7
opt_coeff = opt_coeff@LOC

OPT_GROUP = UNION (OPT_GROUP@LOC,GROUP@IMP7)
power = power@IMP7
opt_coef = opt_coef@LOC
min_pos = min_pos@LOC
max_pos = max_pos@LOC

end_schema INT

Table 3.5: The Integrated (INT) Schema in Optimization

3.5. Extended Integration Approach 45

3.5 Extended Integration Approach

An important outcome of the DIMS integration approach is that any subsystem in WATER-
NET can develop its application programs without the need of knowledge about the format,
structure, and/or location of the data produced somewhere else in another subsystem.

Figure 3.6 represents the main integration architecture of WATERNET based on PEER,
in which each subsystem within the WATERNET is augmented with its DIMS (a PEER-
based federated layer). Within the DIMS layer, the information sharing and data exchange
is supported through the integrated schemas. Using the provided mechanisms, users and ap-
plication programs in a subsystem can specify the queries for data retrieval or data insertion
through the subsystem’s integrated schemas. The defined queries can be specified on line
by human users, using the on-line PC-interface, or within an application program using the
programming languages-interface. Once a query arrives, it will be decomposed into several
sub-queries. The query decomposition is based on the definitions in the integrated schema
at the DIMS layer. Each sub-query is then sent to the proper remote subsystem. Finally,
the local partial-result for the query is merged with the remote partial-results, and produces
the complete result to the query, that will be presented to the end-user and appears just
the same as if it was handled completely local at this node. The approach described above
allows a complete integration of the data stored in different subsystems in a transparent
way, while preserving access security issues, and the execution of concurrent transactions.

Network

PEER
Database

Federated Query
Processing

DIMS

Subsystem_1
Application
Program_1

Federated Query
Processing

DIMS

Subsystem_2
Application
Program_2

PEER
Database

Figure 3.6: Basic Integration Architecture

As represented in Figure 3.6, an application program within a subsystem can then sim-
ply receive its input from (and similarly send its output to) the PEER database server.
However, considering the specific characteristics that define every application domain, this
implementation architecture may not sufficiently support all the requirements within the
WATERNET environment. In specific, to support the water management applications and
the wide variety of subsystems within the configuration of different water companies, in
our requirement analysis stage we have identified the need for a more “open and flexible”
architecture [BAG 98]. For instance, from time to time different subsystems (mostly pre-
existing and some commercial, e.g. new simulation software) may need to be added to (or
removed from) the WATERNET system, in order to better support the specific needs of the
company. Even as a product, some of the existing subsystems may need to be disconnected
from WATERNET, and/or replaced by other existing or new commercial products that run
in the company. Using the federated architecture and approach as described above, these
alterations within the subsystems require that subsystem developers must have database

46 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

language expertise to properly add/remove/replace the subsystems to the federated archi-
tecture. For instance, the knowledge of PEER database language commands is mandatory,
to generate the appropriate PEER commands to be included within any application pro-
gram written in a subsystem in order to develop the interaction between a new subsystem
and its DIMS. A similar problem arises when a unit decides to use as input (for its ap-
plication programs) some other resources outside the DIMSs that may be available from
external applications or databases. Hence, there is a need for an open and flexible integra-
tion architecture. Under the influence of this “openness” requirement, we have extended
the integration architecture of the DIMS to also include the “Adapter” (or data adapters)
components, described in section 3.5.1.

This extensible integration approach supports the system flexibility and application pro-
grams modularity for the WATERNET subsystems. The extended approach, as depicted in
Figure 3.7, through (a) preserves the main properties for cooperative working in multi-agent
environment, such as the data-location transparency, access security, transactions concur-
rency, etc. (similar to the architecture described in section 3.4), but additionally through
(b) with the adapters, supports the openness requirement. Among other features, the
adapters support adding/removing new subsystems within the WATERNET system that
can be developed independently from the WATERNET project. Using the adapters, an
application can receive its input either from the remote DIMS or from external application.
Similarly, the generated output (in addition to storing it in DIMS) if needed can also be
stored locally in a storage facility (or another simple database system) and made available to
external applications that may not even be allowed to access and retrieve information stored
in different WATERNET DIMSs. Clearly, within the WATERNET system, the data of a
subsystem stored within its DIMS can always be accessed by other WATERNET subsystems
through the DIMS to DIMS interconnections.

Network

PEER
Database

Federated Query
Processing

DIMS

Subsystem_2

Application
Program_2 Used

Data

Adapter_2 (a)

(b)

(b)

PEER
Database

Federated Query
Processing

DIMS

Subsystem_1

Application
Program_1 Used

Data

(a)

(b)

Adapter_1
(b)

Figure 3.7: Extended Integration Architecture

The adapter framework supports the following:

a- Provides the storage of the exact output of the application programs in every subsystem
within its DIMS layer. In fact, a module called pre-processor takes the output
of every subsystem’s program in the exact format that it is produced, (being a set
of values, or a record, etc.), reformats it according to the object definitions in the
subsystem’s LOC schema and stores it in the DIMS.

3.5. Extended Integration Approach 47

b- Supports every subsystem’s (e.g. supervision’s) access to the data stored in other
subsystems (e.g. optimization, machine learning, and others) in the exact format that
is required by every application program. In fact, a module called post-processor
provides access to imported data through the DIMS for every application program
but changing its format to the exact format as desired to be read by the required
application program (e.g. supervision’s).

Therefore, the pre-processor and post-processor (in Figure 3.8) together provide the
access to and from the PEER database for every application program in every subsystem.
This mechanism in turn supports the modularity and autonomy of nodes within the cooper-
ative community, while also supporting their desired specific application-program-dependent
input/output formats for data.

3.5.1 Data Adapters Supporting Openness

The Adapter framework, as represented in Figure 3.8, provides flexibility and openness,
and facilities for the development of application programs. In other words, the programs
can read/write their data in the most convenient way to them. For every subsystem the
adapters constitute a set of dual pre-processor and post-processor components, where each
pair supports the input/output of one of its application programs.

N
e
t
w
o
r
k

Adapter
Post-processor

Adapter
Pre-processor

input

PEER
Database

Subsystem_1
Input
Data output

Output
Data

Application
Program

DIMS
Adapter

Post-processor
Adapter

Pre-processor

input

PEER
Database

Subsystem_2
Input
Data output

Output
Data

Application
Program

DIMS

Figure 3.8: DIMS Layer – Federated Data Process using Adapters

Considering the above clarification, the DIMS integration architecture makes the devel-
opment process of every subsystem (as well as adjustment to other environment configura-
tions) very convenient, as it proved itself in practice during the development phase in the
WATERNET project. Namely, every subsystem developed its application programs com-
pletely independent of the others, and it was enough to just specify to the DIMS developer
the desired format for the input and output of those programs and not being concerned with
how this data is produced by others. For instance, a program in machine learning subsys-
tem produces as output ”a file” for which the record format represents: ”r1, r2, r3, r4, r5, r6”.
Meanwhile, for instance, a program in the simulation subsystem, reads its input from ”a file”
with the record format: ”r3, r5, n7, r2, r1, d1”, while here the ”r3” need to be imported from
the DIMS of the machine learning subsystem, ”n7” needs to be imported from optimization
subsystem, and ”d1” is a computation result using different imported and local values. At
the last stage the imported information and other values need to be re-arranged according
to the record format required by the simulation application program.

48 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

3.5.2 The WATERNET System Implementation

The architecture designed for the WATERNET system is comprehensive enough to support
different possible implementation strategies adopted in water companies. Namely, it can
support a wide range of companies. For instance, it can support on one hand the case of a
small water company where all modules of the WATERNET system run on a single system
in the control room at the headquarter, and the remote units only send their collected data
to this headquarter. At the same time, it can support a medium to large size water company
with many geographically distributed control sites, even if different modules of the WATER-
NET system, for instance, the forecasting, machine learning, and water quality management
each run on different sites and are connected only through the communication network. The
PEER federated database system [TA 93], is used as the base for the implementation of the
information management in the WATERNET project and supports the communication and
interoperability among these subsystems. However, the PEER system was extended to bet-
ter adjust to both to the specificities of the water management environment and the specific
development strategies of different subsystems in WATERNET.

Some extensions enhanced the portability of the PEER federated system. For example,
the development of two interfaces: the on-line PC interface and the programming languages
interface for PEER [BA 98b]. Considering the facts that PEER is Unix based, while most
WATERNET subsystems are developed and run on PCs, the on-line PC interface developed
for PEER, allows a user to interact with any database within the cooperative commu-
nity in order to check, retrieve or update the information for which he/she has gained the
appropriate access rights. The Programming Languages Interface includes the necessary
functions that allow programmers to develop their own programs, while interfacing with
PEER through several different applications programs written in C, C++, Pascal, etc.

3.6 Conclusion and Discussion

In this chapter, a general approach for the design of an open and flexible architecture for
the integration between different WATERNET system units, and the mechanisms used for
their implemention were presented. The implementation of the designed architecture for the
WATERNET framework is based on the PEER federated information management system,
since it properly supports the cooperation and information exchange among different nodes
involved in an intelligent cooperative environment. To better support the ”openness and
flexible” requirements in water management environments, the implementation architecture
of the DIMS was extended to include the adapter framework. In addition to the main prop-
erties provided by the PEER federated layer in the DIMS implementation, the extensions
with adapters provide among other features: (1) support for the systems expansion (addi-
tion, removal, or replacement of subsystems), (2) the adjustment to subsystems evolution
(new/modified application programs), (3) the use of external media (resources from external
application) as the input information, and (4) the storage of generated output in a different
media, in order to be made available to external applications that may not even be allowed
to access the information stored in different DIMSs within the community.

The development of the Waternet project has provided a good environment for imple-
menting a prototype of a federated environment. In this environment an open architecture
for distributed/federated information management system was designed. The development
of the federated DIMS system for Waternet was based on the detailed study and analysis of
the water network production environment. The designed architecture and the approach de-

3.6. Conclusion and Discussion 49

scribed in this chapter, or a substantial part of it, can be applied to any other manufacturing
and production application domain, in which several heterogeneous and some autonomous
nodes need to cooperate and exchange their information.

3.6.1 Major Characteristics and Benefits of Federated Approach in
Waternet

The federated schema management and federated query processing mechanisms of PEER,
in addition to the adapters framework presented in the sections above provide a flexible, and
an open environment for the development of a strong water management system. Following
characteristics resulted in this environment represent the major benefits gained from the
approach taken in the project for the design and implementation of the DIMS.

• System openness, so that different modules can be added to/removed from the WA-
TERNET system, as needed, in order to support the specificities of different water
companies. This characteristic strongly supports WATERNET as a flexible product,
since in order to install the WATERNET system in a company, some of its subsystems
may need to be disconnected from this product, and/or replaced by other existing
products that already run in the company.

• No need for the development of a single global schema for all Waternet subsystems
(being centralized or distributed).

• No need for data redundancy/duplication among the subsystems (no data transmission
unless needed). As a result, the problems of data consistency, referential integrity, and
update propagations are eliminated.

• Complete transparency of logical/physical distribution of information among the nodes
in the network, to the end user.

• Retrieved data is always accessed directly from its origin and as a result it is always
up to date.

• The WATERNET development environment has become totally flexible. In fact, all
subsystems continued developing their functionalities and application programs, while
simultaneously the gradual and dynamic development of the DIMS adjusted itself to
their extensions and modifications.

3.6.2 Contribution to GFI2S

The designed architecture and the implemented approach described in this chapter can
be applied to many other cooperative environments, in which several heterogeneous nodes
need to interact and exchange their information. Several of the developed aspects and
lessons learned, during the design and implementation of the Waternet system, are in fact
conforming the base for the design of the GFI2S system described in chapter 6. In specific,
the DIMS architecture of Waternet contributes to GFI2S at two levels:

• At the local system level of GFI2S, we adopted the approach of developing data
adapters of Waternet and developed the Local Adaptation Layer component (LAL)
serving the system openness. In Waternet, similar to many other systems, the role of
an adapter is to adapt and translate data from one application to another. In GFI2S,
we take this approach, but further extend it such that the role of an adapter is to

50 Chapter 3. WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application

also include the local resources specifications. Such specifications include among other
features the access rights to the data. When a query is submitted by an external
user/application, the Local Adaptation Layer (LAL) of GFI2S only delivers the data
to authenticated users. In addition, data is delivered according to the local specifica-
tions for users access rights and their corresponding visibility levels. Therefore, the
LAL in GFI2S controls the access to the local system and preserves its autonomy (see
section 6.2.1).

• At the Node Federation Layer (NFL) of GFI2S, we adopted the federated schema
management of Waternet (local, import, export, and integrated schemas), in tackling
the fundamental schema management challenges. Additionally, in GFI2S, we extend
the definition of schemas by augmenting by the specification of the federated resources
and the semantic descriptions. Such specifications provide a better understanding
of the exchanged information and facilitate the development of schema integration
mechnisms (see section 6.2.2).

Furthermore, we must also admit to the fact that during the development of different
federation components of the Waternet system, we faced two major obstacles, which made
the development of the system requiring a lot of efforts. On one hand, the knowledge and
expertise of the PEER system was needed at the development phase of the various Waternet
subsystems. On the other hand, development of the adapter components was specific to
every legacy system used at the components. Therefore, along with the development of the
Waternet System, for each new module, adapters needed to be developed.

In chapter 6, these two issues will be addressed in the design and development of the
integration architecture of GFI2S.

• To solve the first issue, related to specific languages, we suggest the use of standard
languages for data definition and information access(e.g. ODL, SQL, and OQL). These
standard languages are widely understood by a large community, thus, less effort will
be needed when defining federated schemas and accessing data through them.

• To solve the second issue, we use middleware and standard solutions for informa-
tion exchange, and communication protocols, serving the need and requirements of
openness and extensions. The use of middleware solutions play an important role in
reducing the number of intermediate tools, unifying the access to shared information,
and facilitating the interoperation process among heterogeneous units.

Chapter 4

MegaStore: Advanced Web
Databases for Music Industry

4.1 Introduction

The MegaStore1 system described in this chapter, aims at the design and set-up of the nec-
essary database structure and platform architecture for advanced e-commerce applications,
and in specific addresses the CD and music industry. Unlike most existing systems, the
database design of MegaStore is general enough to include additional information about the
music. Furthermore, the search engine can benefit from the additional stored information
about the music composer/performer and lyrics for the titles, among others. Similarly, the
storage of complete audio/video clips can serve for a future extension to this system towards
what is known as on-line Music from the Wall, with a small effort and reduced cost.

☞ From the usage point of view, the Internet-based CD shopping system, called the
Virtual MegaStore, consists of a front-end system with two main components. The
first component being the Internet-Shop, that can be accessed by all Internet users and
the second component constituting a so-called Shop-in-a-Shop. The Shop-in-a-Shop
interface can be installed inside an existing physical music store and it offers the store
keepers the unique and strong ability to immediately and at the run-time respond to
the requests of customers visiting the music shop, through downloading the raw music
data and producing CDs tailored to the customers requests.

☞ The MegaStore front-end system is based on a back-end component that includes
a distributed object-oriented database and a high performance server architecture.
The database supports geographically distributed multi-media information and the
designed extensible server architecture assures the required high data transfer rate
and the short response time for on-line requests.

The proposed system architecture best suits the e-commerce application, by separating
the public and general information from the private information, and supports the large data
sets that need to be securely kept at predefined Internet sites. Furthermore, the necessary
inter-stores communication requirements are studied and supported based on each identified
activity within the system.

1The Virtual MegaStore project has been supported by the Dutch HPCN foundation whose partners are
the University of Amsterdam, the Frame Holding BV, and the International Music consortium BV.

51

52 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

4.1.1 E-Commerce Applications: Attempts and Aims

To support necessary requirements and flexibility to the buyers of different goods, advanced
and efficient internet-based Electronic Commerce (E-Commerce) services must be designed
and developed. In addition to the traditional user requirements for every application envi-
ronment, the new developed system must properly address several efficiency and organiza-
tion related issues, among which the data catalogues and information classification, short
response time for on-line requests, high system performance, and high data transfer rates
must be considered.

One major technical problem hampering the realization of suitable implementation for
electronic shopping is the lack of possibilities to integrate a wide variety of data in a single
coherent environment, which bases on a comprehensive system architecture and advanced
database technologies [BAH 00, BAH 99, Atz 99, Atz 98, BBH+99]. In the context of web-
based systems, several approaches have been investigated and worked out during the last few
years. These approaches cover different domains of interest and address several application
requirements. As such, these applications address different domains ranging from simple
search engines that allow users to find information of their interest using a user friendly
interfaces [NK 97, MMR 97] to advanced systems that manipulate multimedia information
taking into account the emerging Internet technologies [BBO+99a, AAC+99, MHH 97].
Nowadays, more e-commerce applications embracing electronic shopping via virtual stores
are also emerging (e.g. CD Now2 and Amazon3). However, Web-related systems are still
involving the development of a large number of tools for data manipulation [BEM+98, FGN
98, Frt 99], which require a lot of efforts for their internal maintenance and operation. The
work described in this chapter overcomes some of these problems and addresses the need to
provide the user of electronic shopping with an environment through which he can experience
as sufficiently close to real life shopping experience.

The structure of this chapter is organized as follow. In section 4.2, the music industry
application is studied and analyzed, and the necessary requirements are identified. The sec-
tion also describes the design of complex music library information, and accomplishes the
MegaStore base schema structure using the UML notation and the ODL definition. Section
4.3 focuses on the general design of the server architecture for the MegaStore system, and
mainly outlines the necessary requirements for: the Internet-Shop interface, the Shop-in-a-
Shop interface, and the server architecture extension. In section 4.4, a brief descriptions of
different audio/video music formats supported by the MegaStore system are presented, while
section 4.5 addresses the manipulation of music data contents and their storage mechanisms.
Section 4.6 describes the MegaStore advanced features and outlines the current implementa-
tion status of the system. Section 4.7 presents the Luisterpaal interface and the Music Sheet
application; two applications derived from the MegaStore framework. And finally, section
4.8 concludes the chapter and introduces some possible extensions to the system.

4.2 Problem Analysis and Required High Level
Architecture

The analysis of the music data to be stored and transferred between music shops and the
users plays an important role in defining the MegaStore server architecture. The MegaStore

2http://www.cdnow.com
3http://www.amazon.com

4.2. Problem Analysis and Required High Level
Architecture 53

network must be designed and build in such a way that it provides high bandwidth for huge
amount of data transfer in a very short response time while taking into consideration the
information visibility rights and security of access. Due to the music data specification and
copyrights, a main characteristic of the MegaStore application is that the real music data is
protected by certain music label centers, and neither can it be centralized in one common
database, nor can it be freely or randomly replicated at different sites.

To properly support the requirements of the MegaStore environment, the designed system
architecture involves the following components: [BAH 00]

1. The back-end system, including the database engine and the predefined networking
connection between the MegaStore system components.

2. The front-end system, including (1) the Internet–Shop interface, where a user from
home (or work place) can search for music, listen/watch to the audio/video clips, and
order CDs, and (2) the Shop-in-a-Shop interface, where the music storekeeper can
fetch on-line the real music data from its original source in order to burn at run-time
the requested music CDs.

Under the specifications of the MegaStore system enumerated above, we have identified
the need to design and build a dedicated networking infrastructure for this application,
where the following aspects are studied:

• The music data is geographically distributed over the network

• Information about music is classified into two main categories: the general information
stored at the Directory Services that can be accessed by any user connected via the
Internet-Shop Interface and the raw music data that can only be accessed by the music
storekeepers at music centers or burning towers.

• Depending on the user profile and authorization, only a part of the information can
be accessed, and users need not to know about the data distribution.

• The real music data is securely transferred through a dedicated Network connection
among music centers.

• The system must benefit from intelligent caching mechanisms, which is being further
investigated at the University of Amsterdam, in order to improve the performance of
the system [BA 98a, BA 98b].

• High bandwidth connection is necessary to handle raw music data that needs to be
passed between the real music storage centers and the burning towers.

• Low latency network connection for the Internet-Shop interface is necessary to support
the huge number of users expected to connect to the system.

4.2.1 Database Design

The database design for MegaStore is achieved in collaboration with the experts in the music
industry domain. For design of the database schema, mnemonic names are chosen, taken
from the music context, and thus objects are named for what they represent. This choice
helps for instance the storekeepers to easily understand the elements of the database schema
and use that in formulating their requests.

54 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

Based on the study and analysis of the data to be managed (i.e. stored/transferred)
within the music industry, we have identified two main categories of information:

• The general information needed for the Internet-Shop interface, which represents the
complete information about each song, artist, album, customer, order, etc. (except for
the raw music data itself).

• The raw music data (real tracks) for the Shop-in-a-Shop interface that represents the
real data used for the on-line CD burning.

The dynamism and flexibility of the Virtual MegaStore system mostly depends on its
database design and how open it is in supporting several application domains with different
structures and different size [BAH 99a]. Different pieces of information about the MegaStore
application domain are defined and stored as a set of inter-linked objects of different kinds,
grouped by their domain of interests, e.g. artists, songs, CDs, consumers, stores, burning
towers, etc. We have also taken into consideration the support for the following needs:

✓ To enrich the database, in order to support data of different types (text, html, images,
audio, video, postscript, etc.) [BAH 99a].

✓ To capture the inter-relationship semantics among the objects, through the storage of
a large set of relationships among different pieces of information.

✓ To build a distributed environment where data must be stored at different music
centers, without replication or redundancy at different sites [BAH 99, BBO+99a].

✓ To extend the database in a way that the Graphical User Interface application require-
ments can be supported through the Web server.

The schema represented in Figure 4.1 shows the static view of the MegaStore database
catalogue (also called Directory Services) in terms of classes and relationships among them.
The Database catalogue defines the general music information as described within the sec-
tion. The real music data however, is stored at the secure parallel/distributed database
server descried in section 4.3.3. The name of a class is derived from the problem domain
and must be as unambiguous as possible. The attributes define the characteristics of the
class and capture the information that describes and identifies the class; every attribute has
a type, which specifies what kind of data it represents. The relationship association between
classes is drawn as a solid line and has a name and a multiplicity range [UML 98].

The part of the database schema design for the MegaStore system that is presented in
Figure 4.1 describes the detailed structure of its Directory Service. For instance, a customer
can order some albums, where each album consists of a set of Songs, and it is possible that
one or more artists sing every Song. A song may also have a link to its music composer,
music performer and/or some instruments. Such a specification may help in satisfying users
through many points of views. For instance, a user may be more interested in his/her
search, in the music performer, the music composer, or the used instruments, rather than
being interested in a search based on the artist name or the song title.

Following is a brief definition of the variety of information within the schema defined for
the MegaStore database catalogue:

• The class Song represents the main entity in the MegaStore system. Within this
class, the information about each song is defined. The richness of MegaStore system
strongly depends on the availability of such information in the database. Since the

4.2. Problem Analysis and Required High Level
Architecture 55

Internet-Shop is a dynamic Web interface, for which Web pages are created on the
fly depending on the user request, the system automatically checks the database and
provides the user with the most complete information that it finds in the database.
The class Song has three links to the classes Album, Artist, and Instrument via the
defined relationships “Song Of Album”, “Sung By”, and “Uses”.

• The Album entity represents the class for CDs, tapes, and other means of music titles
collection. Mainly, an album has some characteristics, consists of a set of songs, and
one or several artists sing the songs in the album. The class Album links to other
classes such as Artist and Song, through the specified relationships “Album Artists”
and “Album Songs”.

• The class Artist is the entity that holds all the information about each artist. Under
the normal consideration some attributes such as the artist name, artist photo, and a
short biography, are enough for the artist description.

• The class Customer keeps the necessary information about the customers. Each time
a user makes an order, the system automatically checks the user’s identity based on
the information available in the database, and decides whether to directly access the
information about him/her from the database, if it exists, or requests it from the user,
if it is not.

SONG

Song ID: Short
Song Title: String
Song Type: String
Song Genre : String
Release Date: Date
Song Lyrics: String
Song Price : Real
Status Code: Char
Song Label: String
Song Barcode: Short
Sort Code: Char
Song Prefix: String
Song Suffix: String
Song Flags: String
Song Duration: Time
Song Language: String
Song Stream: Audio
Song Video: Video

Album

Album ID: Short
Album Tit le: String
Album Publisher: String
Album Cover: Image
Album Price : Float
Album PubYear: Date
Album Barcode: Short

Order

Order ID: Short
Order Date : Date

Customer

Cust ID: Short
Cust Name: String
Cust Faithful: Short
Cust Co mpany: String
Cust Address: String
Cust Country: String
Cust Email: String

Instrument

InstName: String
InstCat: String

1..*

ArtistAlbums AlbumArtists

0..*AlbumOrders

OrderAlbums

SongOfAlbum

AlbumSongs

0..*

OrderedBy CustOrders

Used InUses

SungBy

ArtistSongs

0..*

0..*

1..*

0..*

1..*
1..*

1..*

1..1

0..*

ARTIST

Artist Name: String
Artist Bio : String
Artist Language: String
Artist Image: Image

Composer Performer

Figure 4.1: Base Schema Definition for the MegaStore System

4.2.2 ODL Schema definition

The ODL schema definition of the MegaStore Database presented below is a conversion
of the music library database as presented in Table 4.1 which, corresponds to the Unified
Modeling Language (UML) into an Object Definition Language (ODL). The ODL schema
presents the big advantage that it can be automatically loaded into the Matisse database
[Mt 01] or any other ODMG compliant database [CBB+00]. In addition to the standard
ODL definition, Matisse ODL supports the following extensions:

56 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

✓ Multimedia types (e.g. audio, video, and image) are implemented, in Matisse DBMS,
as a list of 8/16 bit Unsigned Short

✓ The entry point dictionary function serves as an entry point for the object to which
the attribute belongs. Entry points are associated with the attributes by using the
keyword entry point of and also serve as an efficient index.

✓ The cardinality is specified in between square brackets after the name of the relation-
ship. The first digit in between the square brackets specifies the minimum number of
successors, and the second digit specifies the maximum number (-1 means no limit).
The default cardinality for a relationship association is [0, -1].

✓ The empty initialization for some attributes declares a null default value for these
attributes.

interface SONG : persistent {
attribute String SongTitle;
entry_point_dictionary epSongTitle
entry_point_of SongTitle;

attribute Audio SongStream;
attribute String SongLabel = "";
attribute String SongGenre;
attribute String SongLyrics = "";
attribute Audio SongSample;
attribute String SongType;
attribute Date ReleaseDate;
attribute Float SongPrice;
attribute String StatusCode;
attribute String SongLanguage = "En";
attribute Short SongDuration;
attribute Video SongVideo;
relationship List<Album> SongOfAlbum
inverse Album::AlbumSongs;

relationship List<ARTIST> SungBy
inverse ARTIST::ArtistSongs;

};
interface Album : persistent {

attribute String AlbumBarCode;
attribute String AlbumTitle;
entry_point_dictionary epAlbumTitle
entry_point_of AlbumTitle;

attribute Image AlbumCover;
attribute Float AlbumPrice;
attribute String AlbumPublisher;
attribute Date AlbumPubYear;
relationship List<SONG> AlbumSongs[1,-1]
inverse SONG::SongOfAlbum;

relationship List<ARTIST> A_Artists[1,-1]
inverse ARTIST::ArtistAlbums;

relationship List<ORDER> AlbumOrder
inverse ORDER::OrderAlbums;

};

interface ARTIST : persistent {
attribute Image ArtistImage;
attribute String ArtistName;
attribute String ArtistBio = "";
entry_point_dictionary epArtistName
entry_point_of ArtistName;

relationship List<CDAlbum> ArtistAlbums
inverse Album::AlbumArtists;

relationship List<SONG> ArtistSongs
inverse SONG::SungBy;

};
interface ORDER : persistent {

attribute Date OrderDate;
attribute Float OrderPrice = 0.0;
relationship List<Album> OrderAlbums[1,-1]
inverse Album::AlbumOrder;

relationship List<Customer> OrderedBy
inverse Customer::CustomerOrders;

};
interface Customer : persistent
{
attribute String CustomerName;
attribute Short CustomerFaithful;
attribute String CustomerCompany;
attribute String CustomerAddress;
attribute String CustomerCountry;
attribute String CustomerEmail;
relationship List<ORDER> CustomerOrders
inverse ORDER::OrderedBy;

};
interface User : persistent {

attribute String UserLogin;
attribute String UserPassword = "";
attribute String UserDescription = "";
attribute short UserLevel = 1;

};

Table 4.1: ODL Schema for the MegaStore Database

Furthermore, the Matisse ODL supports other object-relational extensions that are not
illustrated in the example in Table 4.1. Such extension includes the definitions of indices
and methods for the attributes as well as the specification of check functions and triggers
for both attributes and relationships.

4.3. The MegaStore System Architecture 57

4.3 The MegaStore System Architecture

This section focuses on the design of the server architecture and its extension to support the
Virtual MegaStore system. The choice of the server architecture extensions are due to the
specific needs of this application for supporting its information management and the data
transfer requirements.

As depicted in Figure 4.2, the MegaStore system consists of two components for data stor-
age: the database catalogue at the Directory Services, and the parallel/distributed database
server at the back-end system. All the music information including the short clips of the
converted streaming audio/video that do not require high security protection will be placed
at, and accessible through, the database catalogue, to be made available to the Internet
users. However, the real raw music data that serves for CDs burning is securely kept at
different distributed music centers linked with each other via a secure predefined network
connection, so that only authorized users can access and manipulate the raw music data.
The two sections below respectively describe in more details (1) the Internet-Shop interface
to which ordinary users can connect in order to access the general music information and
place their orders, and (2) the Shop-in-a-Shop interface to which only authorized users from
the music stores can be connected.

Remote
Applications

WWW
Browser

High bandwidth

Low latency

medium bandwidth- medium latency

Parallel Distributed
Database Server

Directory Services

Database Catalogue

Shop-in-a-shop
Server

Internet Shop
Interface

Internet

Local
database

Web Server

Local
database

Web Server

Local
database

Web Server

Local
database

Web Server

Shop-in-a-shop
Interface

Shop-in-a-shop
Interface

Internet Shop
Interface

Internet

Remote Client

I n t r a n e t

WWW
Browser

Figure 4.2: MegaStore Server Architecture Description

There will be three kinds of connections that need to be established between the com-
ponents of the MegaStore system, namely:

① High bandwidth connection, which is required for the case of transferring a considerable
amount of data. This is usually the case, for transferring raw music data between
geographically distributed music centers where the studies show that a minimum of 1
Gigabyte per second Internet connection is required [BAH 00].

② Medium bandwidth with a medium latency connection, which is required for transfer
of medium size data between the MegaStore system components. This is usually the

58 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

case, for updating the directory services when new music albums are produced (e.g.
the connection from the Shop-in-a-Shop interface to the directory services).

③ Low latency connection, which is required to support the huge number of high end-
users who access the MegaStore system and require the transfer of small amount
of data (e.g. the connection between the Internet-shop interface and the Directory
Services). The analysis, of this application domain, shows that a huge number of users
must be supported [BAH 99], the data to be transferred between the Internet user and
MegaStore server however, will be in the range of medium to small size.

The design of the innovative architecture and technology for the MegaStore distributed
environment although applied to the music industry application, is general enough to be
applied to other similar complex application environments. Such complexities are found in
many other e-commerce applications. Fore example, for the complex applications where the
research and market findings need to be combined with the commercial advertising data, as
it opens the collaboration among different enterprises based on common interest in system
architecture platform and database content and technology.

4.3.1 The Internet-Shop Interface

The Internet-Shop attempts to give the user the same feeling as when he or she is visiting
a real music store. The music store, as we know it today, is a place where items can be
touched, where intuition plays a bigger role than knowledge, and where music albums are
usually bought in an unplanned fashion. This is how most people behave during shopping
and this is also what makes the shopping itself fun. The real shop is not limited to a search
engine, which finds products in a faultless but also emotionless manner. Even for the more
expensive products in general, the final decision is often not objective, but is based on the
emotions caused by the color, form, brand, and price. Therefore, the user interface of the
Internet Shop needs to invoke the same kind of emotion as in a real shop.

This means that in an ideal case, a consumer from home wishes to request tracks/titles
that he/she wants to be included in one CD of his/her own compilation, and if he decides
to buy this tailored CD, he wishes to pay, in a secure way, by means of electronic payment.
If the payment is accepted, the system must automatically allocate this customer’s order to
the closest music shop, in relation to the location of the customer. At that shop the titles
are eventually burned and delivered to the user.

4.3.2 The Shop-in-a-Shop Interface

The Shop-in-a-Shop interface adds a new dimension to music shopping. Normal music shops
only have a limited stock. If a customer is looking for a specific piece of music that is not
in the stock, he or she cannot be served. To avoid this problem, the Shop-in-a-Shop system
places a customer terminal either in the music shops or other shops, e.g. photo developing
shops, or even supermarkets, that supports the browsing and selection of music that is
stored in a database server. If the customer has decided to purchase a piece of music, a CD
is produced by downloading the raw music data from the database server. Also, additional
information like booklet, the CD label, and the CD cover is downloaded and produced.
Naturally, the music store must have a very high bandwidth Internet connection to be able
to retrieve the large raw CD data in a few minutes time. The advanced internet technology
although perhaps lucking behind the support for vastly increasing number of customers for

4.3. The MegaStore System Architecture 59

e-commerce, due to the costs and required efficiency, dedicated fast connections are expected
to be available in the near future to properly support the music industry application. Also,
the production equipment like CD burners and high quality printers are expected to be
sufficiently fast in the near future.

4.3.3 Server Architecture Extension

This section addresses the server architecture extension to support both the information
management and data transfer requirements for the MegaStore system. The main require-
ments to take into consideration includes:

1. Design and implement the extensions needed for the existing parallel server system
[PH 98], in order to support all identified Virtual MegaStore database functionality.
These extensions support:

(a) The functionality needed by the HTTP daemons (Web server) front-end, in terms
of support for the Web user interface, including the streaming of audio and video
data.

(b) Easy database administration.

2. Develop and implement a mechanism that supports the entry of music and associating
data into the database system [BAH 99b].

4.3.3.1 Distributed Parallel Server Extension:

To provide the MegaStore web server with efficient access to the raw music data, a par-
allel/distributed database framework is designed and developed [PH 98]. With this imple-
mentation, the nodes (music stores) of the distributed MegaStore server are inter-connected,
making it possible for specific users to connect to any node in the distributed server and to
request an object, without the need to know where that object actually resides.

Due to the music data specification and copyrights that do not allow data replication or
redundancy, this data must be securely kept at the site where it belongs. The distributed
database supports the following required functionalities:

• Provides a way for managing huge amount of data

• Data is securely kept at geographically distributed music centers

• Data is stored only at the point(s) where it belongs

• Data is visible from any node (music center) within the cooperation community

• Data is efficiently transferred between the nodes in short response time

4.3.3.2 Data Storage and Manipulation:

The MegaStore data manipulation concerns two components: the database catalogue at
the Directory Services and the parallel-distributed database server at the back-end system.
All the music information including the short clips of the converted streaming audio/video
that do not require high security protection will be placed at and accessible through the
Directory Services, to be made available to the Internet users. However, the real raw music
data that serves for CDs burning is securely kept at different distributed music centers linked

60 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

to each other via a secure network connection, so that only authorized users can access and
manipulate the raw music data.

The music data loading for MegaStore is a two-fold process. On one hand it stores
the raw music data at the secure distributed server, and on the other hand it updates
the Directory Services with the general information concerning newly acquired albums and
titles. The storage of the music data is provided locally at each site (music centers) by the
music producer framework that can be in some cases integrated with the Shop-in-a-Shop
interface. At this level, in order to keep the system up-to-date and more consistent, not
only the music data entry mechanisms are provided, but also the music data conversion and
data formatting are considered [BAH 99b].

4.4 Music Audio and Video content

This section addresses some issues related to the music data conversion and briefly describes
the variety of different music formats supported by the MegaStore system, as well as it
provides information concerning the music encoders.

Music Audio and Video clips consist of previously captured digital audio or video files,
which can also be recorded from many types of media device. Currently, the MegaStore
System supports most of the existing audio and video formats including Real Audio, MPEG,
CD Tracks, Waveform, QuickTime, etc.

In addition, the MegaStore system is open to support other emerging standard formats,
such as the Secure Digital Music Initiative (SDMI)4. However, most efforts investigated on
music data conversion for the MegaStore system are mainly focussed on the Real Audio [RA
Inc] and the MPEG (MP3) formats, due to the various advantages of these two technologies
over the others. The RealAudio has an advantage of producing both audio streaming and
video clips, and the generated files are of smaller size. The MP3 however presents the
advantage that it produces near CD-quality music and it is widely used over the world.

4.4.1 Bandwidth and Encoding Algorithm

Bandwidth, also known as bitrate, is the amount of data that can be sent through an Internet
or network connection during a set period of time. Bandwidth is measured in kilobits per
second (Kbps). Standard modems are commonly referred to by the bitrate they are able
to receive, for example, 14.4, 28.8, and 56 Kbps. In addition to the standard bandwidths,
music clips can be recorded for bitrates up to 100 Kbps, 200 Kbps, or more. These higher
bandwidths, however, are generally more typical of corporate LANs or entertainment-based
Web sites.

When audio files need to be processed or digitized, an encoder and an encoding algorithm
must be selected. Most Encoders can encode using different algorithms. Each encoding
algorithm is optimized for a particular type of audio and connection bandwidth. Such a
dynamic selection of audio/video clips allows the system to provide the Internet-user with
the best quality connection his/her system can handle, without the user having to explicitly
choose from separate clips recorded for different speeds. In the MegaStore system, for the
digitized music clips we mainly use RealAudio and MP3 formats. RealAudio 56K ISDN,
Music – Mono and Stereo template, best suits the Intenet-Shop needs since we expect
Internet users via ISDN or similar connection. While, MP3 200kps - CD quality music, is

4http://www.sdmi.org/

4.4. Music Audio and Video content 61

required for the Shop-in-Shop burning system. This process is transparent to users, and
the MegaStore system is configured to automatically serve the appropriate streaming file.
As such, we can reach the widest possible audience, while still providing the best listening
experience to users with a high bandwidth connection.

4.4.1.1 MP3 Encoders:

The MP3 audio format has become the standard for this main reason that it produces near
CD-quality music and it is widely used over the world. MPEG Layer 3 files can fit up to a
minute of CD-quality (44.1 KHz, 16-bit stereo) audio in a single megabyte. In comparison
to an audio CD that contain a maximum of 74 minutes of music, filling a 650MB CD-R disc
with MP3 files would result in more than ten hours of music.

The default bandwidth encoding in the programs is 320kpbs, however a 128 kbps is rec-
ommended because it provides near CD quality music and smaller outputs. Any bandwidth
higher that 320 kbps causes overkill, and will make the resulted files much larger which also
implies longer download time and increases transfer costs.

MusicMatch Jukebox5 allows creating MP3s and WMAs from cassette or microphone
with line-in recording. Ultimate Encoder6 is a high quality MP3 Audio encoder & decoder
that supports MPEG Layer 1, 2 and 3. The XingMP3 Encoder7 processes files up to 8 times
faster than other encoders. Faster encoding means you get to spend your time listening to
your music, not waiting for it to encode.

4.4.1.2 RA Encoder:

The RealAudio Producer8 can encode using several different templates. Each encoding tem-
plate is optimized for a particular type of audio and connection bandwidth. The RealAudio
has an advantage over the MP3 in the sense that it can produce both audio streaming and
video clips, and the generated files are of smaller size.

In the MegaStore system, for the digitized music clips we used RealAudio 56K ISDN,
Music – Mono and Stereo. These templates best suit our needs since we expect Internet
users via ISDN and similar connections. Using these algorithms to encode songs of 5 minutes
duration for instance, produce digital audio clips of 1.37 MB per Song (4.9 KB * 300 s =
1.37 MB) which, may result to up to 40 hours of music per CD.

4.4.2 Data Volume Estimation

This section gives some estimation about the data volume that needs to be handled within
the Internet-Shop and the Shop-in-a-Shop interfaces.

For the Internet-Shop interface, the average disk space requested per CD will be around
8 MB (a CD album contains about 15 titles: 550 KB * 15 = 8.25 MB). Thus, a prototype
system of 5000 albums requires about 40 Gigabytes of disk space.

For the Shop-in-a-Shop interface we should add to the total disk space needed for the
Internet-Shop an average of 65 MB per CD representing the complete raw data (in MP3
format), which is around 350 Gigabytes for a system dealing with 5000 albums.

5http://www.musicmatch.com/jukebox/
6Ultimate Encoder Inc., CopyCopyright c©1998-2001 (http://www.usro.net/products/uencoder).
7http://www.xingtech.com/mp3/encoder/index.html
8http://www.realnetworks.com/products/producer/

62 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

The MegaStore system is designed in a flexible way that supports different implementa-
tion strategies. For instance, if the system needs to be extended to support more albums
and titles, one strategy that preserves the system performance is to store the audio/video
clips together with the raw music data at the distributed/parallel database server and not
at the Directory Services. This approach not only extends the system in term of supporting
a considerable amount of music data, but it also preserves the performance of the system
including short response time and data security, by keeping the directory services as efficient
as possible. The Directory Services plays a major role in defining the general MegaStore
information and specifying where the related raw data for each song or album is located
within the distributed system.

4.5 Music Data Manipulation

Due to the huge number of instances to be loaded into the database and the relationships
to be maintained among those objects, the data loading process into the database is an
error prone task to be done manually. Some automatic mechanisms and tools have been
developed in order to ease the data loading process. The developed tools expect the data
to be available in specific format in order to be automatically scanned to a standard format
and loaded into the database.

4.5.1 Objects Loading Strategies

For the data translation process among heterogeneous data sources, a number of approaches
are described in chapter 2 (section 2.2.2.2). In this section, we describe two similar ap-
proaches, which serve the general data storage mechanism in the MegaStore projects.

➀ The first approach builds specific interface to directly store the data from its avail-
able format into the database. This approach requires the development of two-side
dependant interface for each input format. If we consider N different input formats to
be loaded into M databases, the number of interfaces to be developed will be N ∗M
interfaces (Figure 4.3-a). Thus, the number of interfaces to be developed increase as
more input/output formats are considered. The mapping of ten different data inputs
into five different databases, for instance, requires the development of fifty specific
interfaces (10 * 5).

➁ The second approach uses an intermediate step first by storing the data into an inter-
mediate standard format (e.g. OIF, XML), and second by loading this data into the
database system. The advantage of using intermediate standard format is that, it can
be loaded into any DBMS that is compliant to standards. As depicted in Figure 4.3-b,
the number of interfaces to be developed for N different input formats will be reduced
to N+1 (i.e. one-dependant side interface for each input format plus one standard
interface (the standard interface is usually supported by the DBMS itself)). In this
case, the mapping of ten different data inputs requires the development of ten specific
interfaces regardless the number of target database systems (outputs).

The intermediate format through standard only requires the development of a one-sided-
dependent interface for each input that needs to be stored into the database. It has the
advantage over the first approach of being ready to communicate with any other database
system or application program that are compliant to standards. Thus, this approach, based

4.5. Music Data Manipulation 63

on intermediate standard format, is certainly preferred for most cases. However, in order
to cover all possible cases, we also foresee the necessity for supporting the first approach in
some cases that are simple and not expected to change.

Database
D

Database
E

Database
F

SL A-D

Format B Format CFormat A

SL A-F

SL A-E

SL B-D SL B-F

SL B-E

SL C-D SL C-F

SL C-E

SL: Specific Loader

OIF/XML Loader

Database
A

OIF/XML Format

Generator B

Format B

Generator C

Format C

Generator A

Format A

Database
B

Database
N

(a) Specific Loaders (b) Standard loading approach

Figure 4.3: Data Storage Mechanisms

For the music data storage into the database, depending on the input data set structure,
several algorithms are available and can be used to fill the database with the existing data
that is available in different format.

Regarding the first approach we have developed a specific interface to directly read the
data from a Dbase file “.DBF”9 and store it into the Matisse Database [Mt 01]. The DBF
file was provided by a partner from the music domain and it contains more than 50.000
record about song titles and artist names. However, the provided data does not include any
audio/video streaming or images.

For the second approach, we have developed three algorithms for data loading. Each
of those algorithms generates an OIF standard format of different levels of complexity for
which a generic OIF loader is used to fill the database. The three data sets entry algorithms
supported by the system are described within this section, namely:

Format A: expects a set of subdirectories, where each subdirectory is named same as artist
name and contains a list of audio/video files (digitized songs) for that artist stored
locally. The format of each file10 consists of the complete song name with the proper
extension that reflects the audio/video type, and the file size that can be used in
estimating the duration time for each song. From the description of the input data
set, as presented in Figure 4.4, the developed tools allow the creation of the Artist
objects and for each artist, the complete set of songs is created with the proper links
between the two classes Artist and Song via the relationships ArtistSongs and SungBy.

9A dBASE file, a format originated by Ashton-Tate, but understood by Act!, Clipper, FoxPro, Arago,
Wordtech, xBase, and similar database or database-related products.

10In order to preserve music labels and copyrights, the real name and type of the titles are not shown in
the example.

64 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

(a) Artists (b) Artist Songs

Figure 4.4: Music Input - Format A

Format B: As depicted in Figure 4.5, Format B expects a random list of audio/video files
stored locally, the format of each file consists of the artist name between parentheses
followed by the complete song name and its extension. The system, for instance, can
extract from the “(Dire Straits) Money for Nothing.ra” entry, the name of the artist
“Dire Straits”, the title of the song “Money for Nothing”, the type of the audio format
“Real Audio”, and the audio streaming itself. This information will be stored in the
database together with other generated set of relationships such as “Artist Songs” from
artist “Dire Straits” to song “Money for Nothing”, and “Sung By” from song “Money
for Nothing” to artist “Dire Straits”. If the file format does not contain information
about the Artist, only objects of the class Song will be created with the necessary
information and stored into the database.

Figure 4.5: Music Input - Format B

Format C: can be considered as an extension of formats A and B. In addition to the de-
scription given within format B, the Directory structure will be divided into several
subdirectories and each subdirectory is named same as the Album name and contains
the list of the Album titles (see Figure 4.6). Same as it happened in real, an album
consists of a set of songs and one or several artists are singing each song. This format

4.5. Music Data Manipulation 65

is the most suitable, since it allows the creation of three set of class objects (Album,
Artist, Song) with the necessary relationships among them. In addition to the specifi-
cation supported in Format A and format B, the system will automatically extract the
Album name and creates the necessary links to the classes Artist (via AlbumArtists
and ArtistOfAlbum) and Song (via AlbumSongs and SongOfAlbum).

(a) Album (b) Album titles

Figure 4.6: Music Input - Format C

The three algorithms are of different levels of complexity, the two first formats support
the creation of the two inter-linked classes Artist and Song, while the third format augments
the data structure by creating the class Album and adding the necessary links to it.

4.5.2 Extensions

From the three formats presented above, it is clear that some information can be easily
extracted from the music data set such as the artist name, song title, streaming size, etc.
However, some other information can also be automatically derived from the music data set
as presented in the three formats above.

- The type of music can be extracted from the extension of the streaming file (e.g *.rm,
*.ra, and *.ram extensions are Real Audio specification; *.mp3, and *.mp2 are MPEG
specification, etc.). The music type helps in invoking the proper music player for the
selected audio/video streaming. During a web session for instance, the proper plug-in
will be automatically activated by the system based on the type of the music stream.

- In addition, since the music encoder for audio/video tracks is known or can be ex-
tracted. Then, the song duration can be calculated and provided to the database
system. If we consider a Real Audio encoder using a 56K Dial-Up, Music – Stereo
connection that provides a 32 kps streaming audio. We can easily estimate the song
duration of Money for Nothing.ra to 3 min and 44 seconds, since the file size is 787
KB and the used algorithm require 3.5 kilo byte disk space per second.

An Object Interchange Format (OIF) example is presented in Table 4.2, in this example
information about Songs, Artists, Albums are specified and the different links between these

66 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

entities are defined. This example depicts a part of a simple standard exchange format
generated by the algorithm described in format C.

The reader of this document may notice that, within the example presented above, there
are additional information such as the ArtistImage and the CDCover that are not present
in any of the three formats presented above. For that we consider a set of images that are
already loaded into the database, the images are supposed to be titled same as artist name
and album title. During the process of music data loading into the database, the system
automatically checks if there exists a corresponding image for the artist or the album, and
if so a link to that image will be created and maintained for future use.

Song{SongTitle "Beatiful Girl", SongStream "Beatiful Girl.ra", SongDuration "2:29"}
SungBy{Artist{ArtistName "CharlieRich", ArtistImage "CharlieRich.jpg"}
SongOfAlbum{Album{AlbumTitle "All Time Classics", AlbumCover "All Time Classics.jpg"}

Song{SongTitle "How ’bout Us", SongStream "How ’bout Us.ra", SongDuration "4:30"}
SungBy{Artist{ArtistName "Champaign", ArtistImage "Champaign.jpg"}
SongOfAlbum{Album{AlbumTitle "All Time Classics", AlbumCover "All Time Classics.jpg"}

Song{SongTitle "When I see your Smile", SongStream "Smile.ra", SongDuration "4:00"}
SungBy{Artist{ArtistName "Beat English", ArtistImage "Beat English.jpg"}
SongOfAlbum{Album{AlbumTitle "All Time Classics", AlbumCover "All Time Classics.jpg"}

Table 4.2: An OIF Example

4.5.3 Database Administration

Some database administration facilities for the management and maintenance of the Mega-
Store back-end system are provided. Among other features, the database administrator
interface (DBA), implemented in C++ and in Windows NT environment:

• Allows the creation of the database schema based on the data model defined for the
MegaStore system,

• Eases the generation of ready for input data files via the scanning of storage disks and
reformatting the data to fit the standard Object Interchange format (OIF),

• Supports the automatic loading of the music data from standard (non standard) input
format and the creation of the necessary links between inter-related pieces of informa-
tion, and

• Provides a mean for dynamic Web pages generation based on specific user requests.

In order to preserve the data security and confidentiality, users of the system need at
first to connect to a running database server, where they must provide the system by the
database name, the host of the machine running the database, and eventually the user name
and password.

Figure 4.7 shows the main menu of the DBA interface for the music data objects man-
agement. The modules presented on that interface are the OIF files generator for each of
the mechanisms described in section 4.5.1, and the OIF objects loader where the user do
not need to do more than selecting an existing OIF file and validates it to be loaded into
the database.

4.6. MegaStore Interfaces - Advanced Features 67

Figure 4.7: DBA Interface - OIF Loader

4.6 MegaStore Interfaces - Advanced Features

Some major benefits for a Web application to deploy a database management system are:
the dynamism, flexibility, cataloguing, and searching facilities. In the domain of e-commerce,
customers want to be able to find and view different products, make comparison between
those products, and select the products that best suits their needs in an efficient manner.
Another challenging feature in such applications is the fact that customers may have different
preferences based on their needs, their cultures, or depending on the occasion. This section
briefly describes the Internet-Shop user interface for music titles and CD album provisions,
more details about this interface can found in [BAH 99b]. The Internet-Shop interface is
a Web server for music titles and CD albums, it allows a user from home (or at work) to
search for music in an efficient way, listen to partial/complete music tracks, and order the
music he likes.

The adopted MegaStore web server architecture, described in section 4.3, provides the
Internet-Shop interface with an efficient access to the raw music data where, the dis-
tributed/parallel database framework is adapted and extended to handle the huge amount
of raw music data required for burning Compact Discs [BAH 99b].

Figure 4.8 illustrates an activity diagram for the MegaStore Web interface using UML
notation [UML 98]. The activity diagram for MegaStore has a starting point and several
end points. A starting point (also called initial state) is shown as a solid filled circle, and
an end point (also called final state) is shown as a circle surrounding a smaller solid circle.
A state in a diagram is shown as a rectangle with rounded corners. Between the sates are
states transitions, shown as a line with an arrow from one state to another. In this diagram,
for simplicity and clarity reasons only the “Show Help” state shows the possibility to end
the web session or move to another entry point (state in the diagram). However, the system
implementation strategy allows the possibility of ending a session or moving to another point
at/from any state presented in the diagram.

This diagram helps the reader of this document to get a global overview concerning the
MegaStore Web Interface implementation and shows how the different modules inside this

68 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

interface are connected to each other. Namely, level 1 corresponds to the modules that are
accessible from the “Main Menu”, level 2 matches the interfaces invoked from the above
level and displayed on the “First browsing Area”, and level 3 presents the modules showed
on the “Second Browsing Area”.

User
Login

Show
Help

Artist
Entry

Song
Entry

Album
Entry

Show
Albums

Album
Songs

Order
albums

Custom
Orders

Show
Songs

Song
Artists

Show
Artists

Artist
Songs

S

Internet
User

Navigation
Level 1

Navigation
Level 2

Navigation
Level 3

Figure 4.8: An Activity Diagram for the Internet-Shop Interface

Figure 4.9 presents a screen shot of the MegaStore Internet user Interface. As depicted
on this figure the MegaStore system interface consists of three main areas of information
presentation:

➀ The Menu (top left) presents the starting entry from which the user can explore the
MegaStore system for music titles, CD albums, artists, and gets help when requested.

➁ The main browsing area (bottom left): at the starting of the system (the fist time
a user connect to the MegaStore system), this area will be the target for top music
hits, best selling and advertisements for which we want to notify the user and bring
his/her attention. Later on, this will be the area where results of the user requests
are presented in an organized way. If the user for instance request all the available
albums (from the menu by clicking the album’s button and then submit the Search
Album button) the result of his request will be presented on this main browsing area.
In this case, the result consists of a sequence of web pages representing information
about each album.

➂ The Second Browsing Area (to the right): At first, on this area a short description
of the MegaStore system will be provided to the user. During the user exploration
of the system, this will be the browsing area where goes the additional results to the
user request. For instance, if the user requests a CD album from the main menu (1)
by simply specifying the album name, the response to his request will be organized
and presented in the main browsing area (2). From this result the user can click the
album cover and gets more information about the album. Mainly, he can check the
titles within the Album and order it, he can also listen to the music of each song, etc.

4.6. MegaStore Interfaces - Advanced Features 69

Figure 4.9: Main MegaStore Interface

The MegaStore Web interface allows users to navigate through the system and find the
information of their interest in a very efficient way. This section presents a brief description of
some innovative features supported by the MegaStore Internet-Shop interface, such features
include: the system security, ordering mechanisms, dynamic browsing, embedded plugging,
etc.

4.6.1 Dynamic Browsing

Using the MegaStore Internet interface, user queries are immediately sent to the database
and the result of each query is merged on the fly with the corresponding predefined html
formatting, in order to be viewed to the user who is clicking a way the MegaStore Web
Interface. Thus, web pages are created on the fly based on the user request, and information
availability in the database.

Figure 4.10 presents the result of a query submitted by a user requesting all the available
information for the Album “She is the Best 1”. The system for instance, provides the more
relevant information and makes the embedded links for audio/video clips based on the
availability/non-availability of this information. Moreover, the system is built in such a way
that the user will not feel data incompleteness in the interface. In this case for instance,
in addition to Album name, Album cover Image, and the list titles within the album, the
MegaStore system provides the following functionalities:

- The image button at the bottom of the album image, titled ‘Add Album to your Cart ’,
allows the user to add the current CD album to his/her standard order. In this case
the user makes standard order by selecting existing albums,

- the optional speaker icom () after each song, indicates the audio stream availability
for the corresponding title. This option gives the Internet user the possibility to listen
to single partial/complete music tracks from the album. In addition, the speaker icon
on the top-right, after ‘Album Songs’, gives the possibility to listen to all album’s
songs by a single mousse click on that icon,

70 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

- The optional camera icon (), after each song, indicates the video clip availability for
the corresponding title,

- The check-in box marks the tracks licensed for customs compilation, and

- The button at the bottom, titled ‘Add to Cart ’, adds the checked titles to the user
customized order. In this case the user can make his own compilation of titles to be
included within an Album (see section 4.6.2). Please notice that the user can always
add new titles to his custom compilation from different screen sessions. A tailored
order will not be taken into account until being validated by the user.

Figure 4.10: Album Songs Interface

4.6.2 Ordering System

The MegaStore Internet Shop do not only allows users to search for artists, titles, albums,
and listen to audio/video clips, but it also allows a user from home or at work to make his
own orders and place them into the system.

Figure 4.11 presents a state diagram for orders using the UML notation [UML 98].

Submitted

Order
Created

Handled

Order
Handling

Logged

User
Logging

Order
Archived

Figure 4.11: State Diagram for Orders

The MegaStore ordering system has the capability to produce both standard Album
orders and custom compilation orders.

• Standard Orders: A user can create an order based on existing albums. Each time
he/she adds a new item to his/her CD shopping cart, a general overview about the
current order status will be shown including: the list of ordered items, the price of

4.6. MegaStore Interfaces - Advanced Features 71

each item, and the total charge for the order including the handling and shipment
costs. The user will always have the possibility to add/remove items to/from the
order, and the order will not be taken into consideration unless it is validated (checked
out). The order validation process includes gathering the ordered items, the customer
information, and the payment procedure.

• Customized Orders: As depicted on Figure 4.12, the user customized Albums fea-
ture allows users to select the set of titles to be included in the album. While the user
navigates through the Internet-Shop interface he/she can select the songs to be added
to his/her tailored album compilation. The number of titles to be included in the
compilation mainly depends on the total space/time available for the songs support
(CD, tape, etc.). The total price of the customized album is gradually calculated based
on the price of each song and other handling, shipment, and compilation costs.

Figure 4.12: Custom Order

In order to preserve music labels and artist rights, only music tracks specifically licensed
by music labels and artists for custom compilation can be included in tailored orders. Cur-
rently, most major music labels only provide their music for full Album sales.

4.6.3 System Security

The MegaStore System is a multi-level security system. Several kind of users are expected
to use the system including (three roles defined for accessing the MegaStore system):

• The ordinary user (access level 1),

• The storekeeper (access level 2), and

• The system administrator (access level 3).

Within each session a user must identify himself (herself) to the system using a user name
and a password, the system will automatically checks the user authentication against the
information available in the database and allocate an accessibility level to the user. This level
will be valid within the same session and the user can only see the parts of the information

72 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

(system) that corresponds to his/her visibility/access level. In addition, authorized users
can always re-identify themselves with a different access level for the same session.

4.6.4 Current Implementation Status

For the implementation purpose of the MegaStore Internet-Shop interface, we combined
different technologies to support the application requirements as described in section 4.2.
Based on the detailed study of the MegaStore application functionality needs, the appropri-
ate approach to apply and the technologies to use are identified [BAH 99]:

- The designed database is being implemented on top of the Arches computers at the
University of Amsterdam. The Arches system is currently composed of 20 nodes
containing each a dual Pentium II with 512 MB ram and 9 GB disk, and it supports
several network communications.

- The Matisse database system [Mt 01] is used as the object-oriented distributed
database system (ODBMS). Among other features Matisse supports transaction man-
agement, concurrency control, historical versioning, indexing mechanisms, high speed
for data access, multi-media streaming, and standard programming interfaces using
C/C++, Java, ODBC, etc.

- Different Internet infrastructures are deployed depending on each functionality of the
MegaStore system (a high bandwidth communication between the music stores for huge
amount of data transfer and a low latency communication to the Directory Services
for high end-users access).

Some experiments are performed using an NT front-end machine to run a DBA interface
and an Internet-Shop server, that is in turn connected to the Matisse database running on
the Arches machines, using the ODBC driver. The database administrator (DBA) interface,
implemented in C++ and Windows NT environment, provides some administration facilities
including the automatic loading of the music data and the creation of the necessary links
between inter-related pieces of information. And The Internet-Shop server is implemented
using a combination of the most recent and relevant software technologies including JAVA
Script and Visual Basic Script for tips programming, Active Database Objects (ADO) for
database connection, and HTML for text formatting. The implementation of the server
is made possible, using the Active Server Pages programming environment that allows the
combination of all these different software technologies in one single environment.

4.7. Derived Applications 73

4.7 Derived Applications

This section describes the implementation prototypes of two innovative interfaces related to
the MegaStore system, namely, the LuisterPaal11 interface and the Music Sheet12 applica-
tion. The LuisterPaal interface provides a simplified version of the MegaStore system, while
the Music Sheet application provides an extended implementation of the MegaStore general
concept. Figure 4.13 presents a conceptual model for e-MegaStore applications. This model
shows the applicability of the comprehensive MegaStore framework to the design and imple-
mentation of similar systems in the area of manipulating multimedia large data sets. Thus,
the two applications proof the general implementation approach for the MegaStore system,
from which other applications that share the same characteristics can also benefit.

Information Integration
and Value Adding

Retailer Shops and home users

Value Adding
Partners

Content Suppliers Partners

Figure 4.13: Conceptual Model for an e-MegaStore Application

4.7.1 LuisterPaal Interface

The LuisterPaal interface [BAR+01] is a listening booth facility, which enable users visiting
a music store to listen to music. In order to facilitate interactions with the system, the
self-service LuisterPaal interface uses a scanner (barcode reader) and a touchscreen13. The
barcode reader facilitates the searching mechanism for the user, while the touchscreen is a
finger selection technology that makes the interaction with the system more reliable. Music
selection is simplified to the scanning of the barcode of a given album, therefore, the entry
to the database is achieved via the unique barcodes of the albums.

From the implementation point of view the LuisterPaal does not differ much from the
MegaStore concept. Its user-friendly interface is based on the use of (1) a database cat-
alog holding the Album’s information (e.g. titles, duration, artists) and (2) a multimedia
database server holding the real audio/video clips for each album.

11The LuisterPaal interface is a joined project between the University of Amsterdam, Power Computing
and Communication PCC - UvA, Free RecordShop NL, and Siemens Nixdorf.

12The Music Sheet application is a joined project between the University of Amsterdam, Power Computing
and Communication PCC - UvA, MondriCom b.v, and Attitude NL.

13Touchscreens are specialized hardware products aimed at assisting interaction with computer learning
devices. Touchmonitors emulate a mouse, giving the user ”Free-Rein” in selecting appropriate items on the
screen, by touching the requested features.

74 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

The LuisterPaal system is simple to use and very advance regarding the functionslities
it provides. It consists of a very friendly user interface, where a user can simply scan the
barcode of a CD and follow a real interaction with the system. The barcode scanning is
realized via a fixed barcode reader (scanner) attached to the touchscreen. The barcode
reader and touchscreen are mandatory for simplicity reason; the system also runs on a PC
with a normal keyboard and mouse.

Figure 4.14: LuisterPaal User Interface

Within the LuisterPaal system, the user in a music store can grab a case of a CD and
scans its barcode to the system. At the music stores, instead of using the case of a CD to scan
the barcode, the availability of simple catalogs for Albums including barcode’s specification
provides a more convenient solution. When a user enters the barcode of an Album, the
system connects to the database catalog, extracts the necessary information to be browsed
to the user on the screen, and launches the audio/video streams to be played on-line. At
any time during the listening process, the user can introduce the barcode of a new Album or
freely interact within the audio/video clips of the album. Figure 4.14 shows three screens of
the LuisterPaal interface. As depicted in the figures, the user can do the most audio/video
operating functions (e.g. play, stop, pause, play next, play previous, play first, and play
last). The LuisterPaal interface provides the following benefits and advantages:

❆ Very simple interface in which, a user has only to scan the barcode of an album, the
rest is automatically done by the system,

❆ Flexible interface based on a large collection of music data stored in a database catalog,

❆ Support for video clips to be played on the screen,

❆ Audio/video data streaming are fetched on-line from the multimedia database server,

❆ Interactive system in which, a user can freely navigate across albums and titles, using
specialized hardware devices (barcode reader and touchscreen),

❆ Unlike existing kiosks, in which a listing point is requested for each album, a single
LuisterPaal interface is linked to the totality of albums within the database catalog.

❆ Most users in music stores are not aware on how to make complex queries based on
keywords. Thus, The use of a barcode reader and a touchscreen facilitate the user
interaction with the system,

4.7. Derived Applications 75

❆ The LuisterPaal approaches reduce the costs and efforts in making such facilities for
ordinary users. The estimated costs and efforts are limited to the development of the
database catalog and the set-up of the interface.

❆ The use of database standards and middleware solutions during the implementation
of such a system eases its extension and makes it reusable.

4.7.2 Music Sheet Application

Music Sheet is a new emerging application in the domain of music notes and their performing
issues. It consists of the design and development of a complete system, which model the
complete life cycle of music production in one general concept. The development phases of
the global concept rises from the lyrics writing phase, to the performing phase, to copyrights
and publishing phase. At the same time it addresses the degree of difficulty, the used
instrumentation, and Intellectual Propriety Rights (IPR) related to music production.

The Music Sheet server [BAR+01], briefly described in this section, provides a catalog
that lets retailers form different music bookstores to search for music books, retrieve music
notes, and place their orders into the system.

Among the highlighted development characteristics of the Music Sheet application are
the extended data model and the flexible search interface. The complete data model allows
the proper structuring of the application and links together related real world entities, while
the flexible search interface provides a mean to navigate through a complex set of data
inter-linked to each other via many relationship associations.

Figure 4.15 illustrates the data model for the Music Sheet application and shows the
added entities to the data definition concepts, among which music notes, different instru-
mentation types, and instrumentation elements are supported. Within this model, music
publications are well defined and classified into several categories of music books and folders.
Each of these publications is composed of a set of titles; a title in turn is composed of several
parts.

The richness of the Music Sheet data model has led to the development of a very flexible
interface for the sheet music application. The search mechanism of the interface uses and
combines several entities as entries to the database system. Search for publication titles and
music notes is based on a combination of author name, title, instrument type, music genre,
keyword, etc. A user for instance, can search for a piece of music notes of genre ’classic’,
composed by ’Bach’, and played with both ’organ’ and ’string’ instruments.

76 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

Serie_Pubs

Pub_Serie

Review_for_Pub

Pub_Reviews

1..1

SeriesSeriesOrder

1..n

0..n

SeriesOrderSerie
s

Series
Name: String

OrderLine
Amount: Short
Price: Float
Total: Float

Order

Total: Float

Organizat ion

Name: String
Address: String

SeriesOrder

0..n

0..n

Review
Grade: String
Text: String
Date: D ate

Publication
series_number
title_cover: String
title_parallel: String
title_uniform: String
title_original: String
title_double: String
language: range
age_group: range
pub_form : range
dimension: range
price: Float
pub_year: Date
ISBN: String
ISMN: String
PMPN: String
Weight: Float
Image: Image
recommendation: String
pages: Short
keyword1: String
keyword2: String
keyword3: String

VisitorReview
VisitorName: String
VisitorEmail: String

PublicationOrder

Pub_Appendixes

Appendix_Pub

OrderOrderline

OrderlineOrder

1..n

0..n

0..n

1..1

Publ.order_Publi

Publ_Publ.order

1..n
0..n

Supplier
Region: String

OrderSupplier

SupplierOrder

1..1

Publisher
DeliveryTime: String
PublisherNumber: Short

Wholesaler
Publishes

PublishedBy

0..n

1..1

Original
Title: String
title_sortingposition: String
Nickname: String
Key: String
Tempo: String
Structure: String
Goal: String
Duration: TimeInter val
CompositionYear: Date
Keyword1: String
Keyword2: String
Keyword3: String

Copyright
CopyrightYear: Date

CopyrightOrigi nal
OriginalCopyright

0..n

1..1

CopyrightPublisher

PublisherCopyright
0..n

1..n

Copyright_Pub

Pub_Copyright

SpecialistReview

Specialist: String

Appendix
ApdxT ype: range
Name: String

0..n

1..1

FolderMusicBookBook
BookGoal: range
BookGenre: range
FullDescription: String
Toc: String
Index: String
Errata: String
Colophon: String

PublicationTitle
Originality: range
Goal: range
Genre: range
Pages: Short
NoteExample: Image
Audio Clip: audio
title_cover: String
title_parallel: String
title_unifor m: String
title_double: String
PMPN: Short
ISMN: Short
ISBN: Short

PubT_Folder

Folder_PubT

PubT _MusicBook

MusicBook_PubT

0..n

0..n 0..n

1..1 Author
Name: String
BirthDate: String
DeathD ate: String
Biography: String

ComposerArranger Translator TextWriter

Text
Language range
Text: String

Voice

String
Organ Wood Brass

WindKeyboard Rhythm

Instrument

Difficulty: range

Instrumentat ion

Name: String

Instrumentat ionElement

Name: String

Part
Difficulty: String
SheetMusic: String

Translation
English
Dutch
French
German

AgeGroup
Value: String

Edition
Value: String

Level
Value: String

Language
Value: String

Dimensions

Value: String

Grade
Value: String

Tempo
Value: String

BookGoal
Value: String

Originality
Value: String

BookGenre
Value: String

Genre
Value: String

Structure

Value: String

Original_Tex t

Text_Original

0..1

1..1

Key

Value: String

Figure 4.15: Database Model for the Music Sheet Application

4.7. Derived Applications 77

Figure 4.16 shows four screens from the Music Sheet interface, those interfaces illustrate
few samples among many other interfaces14 dedicated to explore and navigate through the
complete structure of the database model. Following are brief clarifications concerning the
four samples presented in Figure 4.16:

1. Subscription interface is mandatory when a user decides to order some music books
or music titles

2. Music search interface allows a very flexible entry to the system, in which a user can
specify and combine different keywords related to his/her search criterions (e.g. title,
composer/author, number, genre, and instrument).

3. Composer search interface explores in more detail information about authors. This
interface is accessed via the main list of authors or via direct links from publications
and publication titles.

4. Music notes example provides a sample of the music notes available for the publication
titles. Usually, those samples are free to download and to print.

 Music Notes
 Example

 Music Notes
 Example Composer Search

Interface

 Composer Search
Interface

 Music Book
Search Interface

 Subscription
Interface

 Subscription
Interface

Figure 4.16: Music Sheet User Interface

14Among them, we enumerate interfaces for publisher, suppliers, reviews, copyrights, detailed titles de-
scriptions, and interfaces for music books ordering.

78 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

Advantages gained within the development of the sheet music application:

❆ The Music Sheet application benefits from the MegaStore concept and adopts its full
ordering system.

❆ Publications and publication titles are well defined and more descriptive elements
are introduced to their definition. Among these elements, we enumerate music note
samples, degree of difficulty, reviewers’ recommendations, and support for several types
of keyword.

❆ A clear distinction is made between the different authors participating in the produc-
tion of a given piece of music. The authors range from text writer or translator, to
the music arranger, to the music composer.

❆ The system is open for specialists, reviewers, and system visitors to give their comments
and recommendation for the different part of the music.

❆ The designed database model is comprehensive enough to express the intellectual pro-
priety rights (IPR) such as text originality, copyrights, and publishing organizations.

❆ The Music Sheet interface provides a very flexible entry to the database based on the
combination of keywords from different entities.

❆ The interface is more dedicated to music bookstore retailers, but it is also simplified
and can be used by ordinary users.

❆ The system is extended with a component, which give users the possibility to describe
in more details a desired item that it could not be found using the search interface.
User requests will be treated by a specialist in the field and results (if any) are sent
back to requesting user.

4.8 Conclusion and Discussion

This chapter addressed the innovative design methodology of an open architecture for the
MegaStore application. The chapter first described in details the application requirement
analysis and the database design, and then it addressed the general design and the server
architecture for the Internet-Shop and the Shop-in-a-Shop interfaces. Further discussions
are focussed on the issues of music conversion mechanisms, extensions to the distributed
multimedia server, and the adaptation of the MegaStore framework to other e-commerce
applications within the music industry. A distributed/parallel multimedia database server
is adapted and extended to handle the huge amount of raw music data required for burning
Compact Discs.

The development of MegaStore system and its extension with further sub-projects, such
as the LuisterPaal interface, and the Music Sheet server ; have proven the strength and
generality of both the database design and the system architecture developed for these
applications. The system analysis and the database design for the applications, developed
for MegaStore, are achieved in collaboration with the experts from the music industry. Thus,
the database schema description and names chosen for the schema components were taken
directly from the music context, and also the object naming strategy in the e-MegaStore
framework is mnemonic.

4.8. Conclusion and Discussion 79

4.8.1 Major Characteristics and Benefits provided to MegaStore
Application

As depicted in Figure 4.17, within the MegaStore framework, that is adjusted to support
more e-commerce application, we have designed and developed an e-MegaStore architecture
that seamlessly fits the current Music Store models of operations. In addition, in supporting
their main goals, the e-MegaStore framework offers the following additional advantages:

Internet

Additional Inf.

Catalogue

Multimedia
DatabaseMajor

Content
Suppliers

…..
…..

…
…

…..
…..

…..
…..

Suppliers Retail Value Adding

Upload & Storage

External Links

FireWall

Internet Users

Shop Network

Advanced In-Shop Systems

Figure 4.17: e-MegaStore System Architecture

• Value added information can be gathered from different major suppliers/retailers and
gradually added to the database catalog. The database catalog can make references
to multimedia data stored either at the multimedia server or detained by external
suppliers. At the same time, it is possible that external catalogs link their informa-
tion systems to the audio/video data stored within the multimedia database server,
developed for the e-MegaStore applications.

• The use of Matisse object-oriented database system [Mt 01] made it possible to fulfill
several requirements for MegaStore database development and its extensions, in spe-
cific to support multimedia data types, large objects handling, indexing, versioning,
and high performance. The use of Matisse object-oriented database system together
with a parallel/distributed database server for the development of the e-MegaStore
applications provide the following advantages:

– Allows flexible navigation through complex Web objects.
– Supports scalability as necessary for multimedia large objects.
– Provides high performance as required by multi-users applications.
– Supports manipulation of new data types (e.g. for author biography, song lyrics,

images/photos data, and audio/video streams).

• The security and data encryption issues for audio/video data streams are fully ad-
dressed and considered within different applications. The parallel/distributed database
server for MegaStore provides three levels for security and encryption:

80 Chapter 4. MegaStore: Advanced Web Databases for Music Industry

– Short audio/video clips (data) are securely stored but not encrypted.
– Medium audio/video tracks are encrypted and securely stored.
– High quality audi/video streams are highly encrypted and securely stored.

4.8.2 Contribution of the MegaStore’s Information Management
Approach to GFI2S

The main idea behind the design and set-up of the necessary database structure and system
architecture for the MegaStore application was to develop a comprehensive system that
supports applications with two specific characteristics: (1) to facilitate the storage and
manipulation of large data sets and (2) to provide a flexible information classification and
clear separation between public and proprietary data. The experience gained from the
approach followed in MegaStore Contributes to the following three features in the design
and development of the GFI2S:

• System Reusability, through the deployment of database standards and Internet mid-
dleware, for data definition and information access. Thus, making optimum use of
the developed components, unifying the access to data, and reducing the development
efforts.

• System Efficiency, through the development of parallel/distributed database servers
and through the deployment of good strategies for the storage and management of
large and complex data. These strategies have proven their strength and flexibility
through different applications within current MegaStore-like models of operation.

• User Assistance, through the development of user friendly interfaces. In MegaStore,
these interfaces are addressing the needs of ordinary end-users in E-commerce appli-
cations. While, in GFI2S, they are planned to also assist advanced users in creating
federated schemas, specifying the access rights on the shared information, defining the
schema derivation mappings, and so on.

Chapter 5

Information Management for
Scientific Applications

5.1 Introduction

This chapter identifies the basic information management requirements of emerging appli-
cations in e-science and presents the main approaches taken within the Virtual Laboratory
project addressing these requirements. The Virtual Laboratory project (VL1) initiated at
the University of Amsterdam and supported by the Dutch ICES/KIS-II program, aims at
the design and development of a generic environment and a flexible architecture support-
ing scientific applications and scientists with their experiment definition and control, data
handling facilities, and access to distributed resources. The cooperative federated informa-
tion management framework developed by the CO-IM group for the VL, aims at providing
the necessary information services to enable scientists and engineers to work on their ex-
perimentations, and to properly handle all related data/information [AKB+01, ABK+00].
However, the work presented in this chapter describes only the contribution of this author
to the partial design and development of the VL information management functionalities.

This chapter first briefly describes the architecture design of the Virtual Laboratory
and then focuses on specific advanced features, functionalities, and facilities introduced and
developed for management of information in scientific applications. The addressed features
include:

☞ The strategies for storage and retrieval of multimedia scientific information (ad-
dressed in section 5.3.1),

☞ The use of standards for scientific data modeling and archiving, supporting the
integration of data from heterogeneous sources (addressed in section 5.3.2),

☞ Universal and schema free access to scientific data, stored within various local
and remote database management systems (addressed in section 5.4),

☞ Access security to the data available within the VL archive is based on predefined
visibility restricted schemas. As such, appropriate access rights and visibility levels

1Virtual Laboratory (VL) is also referred to as VLAM-G that stands for Grid-based Virtual Laboratory
AMsterdam.

81

82 Chapter 5. Information Management for Scientific Applications

for individual users and groups are presented. This approach, addressed in section 5.5,
is mainly adapted for VL Scientific Results Publishing ,

☞ At the end of this chapter performance issues of the suggested implementation
approach is addressed. Benchmarking tests, for the storage/retrieval of massive
amount of data is performed. The presented results address the specific features that
assure database efficiency and performance, including the information access security
and the short response time for data transfer (addressed in section 5.6).

If we define a site as an organization with several application systems and databases,
this chapter provides generic tools and advanced facilities that can be adopted by every site
to enable it as a node in a cooperation network. On one hand, sites can benefit from
these generic tools and advanced facilities in order to make their applications and databases
stronger and more efficient. On the other hand, the use of standards and the consideration
of state-of-the-art techniques, when developing these tools, enable these sites for appropriate
collaborations taking advantages of (1) interoperability for data access and communication,
(2) information sharing/exchange for interfacing and federation, and (3) collaboration within
Virtual Laboratories and Virtual Organisations.

Later on in Chapter 6, the design and development of a more generic and flexible collab-
orative information management framework is described, addressing the cooperation among
different centers and scientists, required within the e-science and other emerging collabora-
tive applications.

5.2 Virtual Laboratory Architecture Design

A main goal of VL is to provide a science portal2 for distributed data analysis in applied
scientific research. The VL supports scientists with all the steps involved in conducting
their experiments, using the Virtual Laboratory facilities. The steps may involve experiment
definition and control, access to local and remote sites, process and analyze the retrieved
data, archive and publish the resulted information, control of external devices from their
experiments, use advanced tools to simulate and visualize the results, collaborate with other
scientists and centers, and so on. Thus, Virtual Laboratory (VL) provides a user-oriented
environment and a science portal, supporting collaborative, Grid-based distributed analysis
in applied sciences, using cross-institutional integration of heterogeneous information and
resources [ABB+01].

The general design of the VL architecture is based on multiple functionality layers, so
that the required application-specific and domain-specific computational and engineering
features can be separated and dealt with differently from the generic computing and data
management aspects. The generic aspects serve a broad range of scientific domains, and in-
clude features related to parallel/distributed computing and networking infrastructure, basic
middleware tools for information management and collaboration, and generic environment
for simulation and visualization techniques. Further, domain-specific or application-specific
features, are defined on top of these generic features.

2A science portal refers to delivering science information and services to industry, investors, and to the
research community; using cross-institutional integration of heterogeneous information and resources.

5.2. Virtual Laboratory Architecture Design 83

Micro-array
FTIR

Microscope
CAVE

Virtual Reality
high-performance

Computing

GRID MiddleWare

DNA-ARRAY APPLICATION MACS APPLICATION OTHERS

VL on GRID MiddleWare

VIMCO VISE COMCOL
Application

Toolkit Layer

Grid Resources
Layer

Application
Layer

Grid Services
Layer

Expressive MACS EFC

BASE FUNCTIONALITY

Storage

VL Portal and RTS

Figure 5.1: Functional layers within the Virtual Laboratory Environment

As illustrated in Figure 5.1, the VL reference architecture is primarily composed of
four functional layers [ABK+00, AKB+01, ABB+01]. This multi-layered design primarily
represents the functionalities supported by the VL, and does not imply that the development
of the layers at the “upper” levels is dependent on the “lower” layers. Rather, it represents
the fact that on one hand every layer can be developed simultaneously and independently of
the others without the need for extensive interaction during the design. On the other hand, it
allows to focus on one layer at a time and it provides possibilities for a clear description of the
primitive Virtual Laboratory operations and components, and their individual functionalities
at different levels. The four-layer architecture of VL is briefly described below.
Layer 1: Grid Resources Layer

The Grid Resources Layer provides the high-bandwidth low-latency communication plat-
form, which is necessary both for accessing the underlying large data sets and for the physical
or logical distribution of the connected external devices and the client community that uses
the laboratory facilities.
Layer 2: Grid Services Layer - Grid MiddleWare

The gigabit networking technology being set at the University of Amsterdam, and the
Globus distributed resource management system [FK 98], are used for the development of
VL Grid middleware environment. The Globus system addresses the needs of the high per-
formance applications that require the ability to exploit diverse, geographically distributed
resources. The VL Grid MiddleWare provides basic mechanisms for the communication,
authentication, network information, and data access. These mechanisms are used in VL to
construct various higher level services, such as parallel programming tools and schedulers
for multidisciplinary scientific applications. Since the Globus system offers the resource
management required for distributed computing, it is used for the development of some

84 Chapter 5. Information Management for Scientific Applications

VL internal components (e.g. remote data access, resource allocation, and secure access to
external devices).

Layer 3: Application Toolkit Layer - VL on Grid MiddleWare

Two main roles are targeted by the development of the VL middleware layer. First, it
provides a set of generic functionalities for the various applications from advanced scientific
domains such as physics, chemistry, system engineering, medicine, and biology. Second, it
bridges the gap between those advanced applications and the Grid-services layer. The major
components of VL middleware support unique information provision and provide means for
resource integration and collaboration. These components include:

➀ The VL Portal and RTS, provides a Grid-based science portal, supporting the VL
functionalities for a wide range of users, while hiding the details related to the dis-
tributed data computation from the end-users [BHG+01]. The VL portal can be easily
used to define a new VL application, while the RTS (Run Time System) forms the VL
core component constituting the interface between the VL Grid MiddleWare and the
underlying Grid services (Grid MiddleWare).

➁ The VL Information Management for Cooperation (VIMCO Module) provides archiv-
ing services as well as the information handling and data manipulation within the
Virtual Laboratory. This module supports a wide range of functionalities ranging
from the basic storage and retrieval of information (e.g. for both the raw data and
processed results), to advanced requirements for intelligent information integration
and federated database facilities, and to supporting the collaboration and information
sharing among remote centers.

➂ The Communication and Collaboration (ComCol Module) enables the communication
with external devices connected to the laboratory, as well as the secure communication
and collaboration between users within and outside the laboratory.

➃ The Virtual Simulation and Exploration (ViSE Module) presents a generic environ-
ment in which scientific visualization, interactive calculation, geometric probing and
context-sensitive simulations are supported.

Layer 4: Application Layer

At the top layer of the architecture is the application dependent part of the Virtual
Laboratory framework. Within this layer, interfaces are present, and application-specific
and domain-specific tools are provided in order to enable users to make their specific exper-
iments, using the functionality provided by the other layers in the architecture. Among the
domain specific application cases that are currently in development phase within the VL
project, we enumerate: MACS- material analysis for complex surfaces [FAE+01, EAG+01],
EXPRESSIVE- genome expression in biology [KAB+01], dynamic exploration and dis-
tributed simulation within interactive environments [BS 00, SKH+99], and EFC – Electronic
Fee Collection and intelligent transport systems [VWH 00, DHA+98, HDB+97].

Due to the focus of this chapter of the thesis on the information management within VL,
the following sections only describes the contribution of this author to the partial design
and development of VIMCO module.

5.3. Multi-Media Scientific Data Sets Manipulation 85

5.2.1 The VL Information Management for COoperation - VIMCO
Module

The VIMCO module is being designed as a multi-level information management system and
environment to support the classification and manipulation of the data within the Virtual
Laboratory environment. Considering the wide variety and large amount of data handled
within different layers of the VL, the required information management mechanisms may
vary. Namely, the need for parallel database extensions, distributed database facilities, and
federated/integrated information management; must be considered. These extensions are
necessary to better support the information management requirements of advanced scientific
applications. Therefore, the design of the information management system must support
structured as well as binary data access, data integration from several sources, location
transparency for remote data access, secure and authorized access to shared data among
networked applications, and the intelligent data handling.

The general design objectives of the VIMCO system within the VL cover the areas of
fundamental database research and development to support complex domains. The VIMCO
development primarily addresses two main focus areas:

❶ The first area focuses on the Data Archive : storage and retrieval of a wide variety
of scientific and engineering data necessary to be handled within the VL, supporting
their categorization, storage, and scientific data publishing (that is the focus of this
chapter).

❷ The second area concentrates on the development of a Generic and Flexible Infor-
mation Integration System (GFI 2S): a flexible collaborative framework preserv-
ing systems autonomy and supporting the import/export of data based on informa-
tion visibility and access rights defined among systems (that is the focus of Chapter
6). GFI2S is designed as a generic approach that serve the information integration
in a highly dynamic network of applications. Therefore, its deployment within the
Virtual Laboratory environment can improve the accessibility to large databases for
data intensive applications and can provide access to a variety of distributed sources
of information.

The work on data archiving focuses on the design and development of an information
brokerage system to archive the wide variety of data with different modalities and from dif-
ferent sources. This includes all the data generated through specific research and application
domains supported by the VL framework. For instance, for the information handled by ViSE
and ComCol modules of the VL as well as other VL applications, a catalogue/archive schema
has been developed using the Dublin Core MetaData standard. This catalogue/archive
schema has been refined to achieve a more scalable and extendable archive meta-metadata,
able to capture comprehensive information about the complete experimentation process
(e.g. raw/processed data, experiment parameters, scientist information, hardware devices,
and software characteristics). The designed schema is extendable to cope with the future
modifications and with the flexible addition of new experiment types.

5.3 Multi-Media Scientific Data Sets Manipulation

One common characteristic of the scientific domains such as biotechnology, physics, astron-
omy, and complex engineering applications, is that they all produce large data sets. The

86 Chapter 5. Information Management for Scientific Applications

data generated from different experiments in each of these domains needs to be inter-linked
and referenced, so that the scientific applications can fully utilize the outcomes of the ex-
periments.

The physical data storage approach plays an important role in the long-term strategy
for data management in organizations. The data storage approach chosen for an application
environment mostly depends on the requirements of the application, specifically for data
archiving and information access. Simple applications, for instance, are built on top of
the file system. Other applications from system engineering domain, however, require the
deployment of proper physical database design for storing their data. Nowadays, more
complex applications such as in bio-informatics [Gelb 98], biology [BDH+95], and medicine
[BAS+99] require much more advanced solutions. In such solutions, the design of a proper
system architecture and physical database approach can help in solving problems related to
information security and efficiency of access, as well as facilitating the cooperative working
processes among different experimenters and sites. The approach must also take benefits
from using database systems in terms of user view definition, information sharing, and
system integration.

Considering the complexity and the distribution of data in advanced scientific applica-
tions, the proper management of the domain information and knowledge is challenging. The
scientific data storage/archiving and data access/retrieval mechanisms must be addressed
in such a way that data sets can be properly searched, retrieved, compared to other existing
data sets, published, and inter-linked. In addition, the necessary mechanisms for informa-
tion security, performance issues, and the means to distinguish and protect the private data,
together with the necessary support for the data to be published and shared with remote
users must be provided.

Therefore, the objectives of a system for scientific data management must go beyond
just providing a networked “hierarchical storage management” system [HSM 01], which
only enhance the notion of a traditional file system made up of a hierarchy of directories
and files. Traditional mechanisms for storing large volumes of scientific data are inadequate
to satisfy the long-term cataloging, access and retrieval needs of scientific experimentations
and their meta-data.

In scientific applications, meta-data refers to the annotations and added “information”
to the scientific data sets, which is for instance different than the meaning of meta-data,
referring to schemas in databases area. Scientific meta-data is an essential component of
a data archive; its storage and maintenance help users to understand the structure of the
archive and provide necessary information to correctly interpret the data [JCF 95]. Scientific
applications commonly include a metadata database utilizing database management systems
to provide users with a powerful query facility. The metadata database is often managed
separately from the archive as a facility for locating data [JCF 95, GSB 95]. In many
cases, recent research combines DBMS technology with the so-called hierarchical storage
management systems (HSM). The DBMS is re-engineered to use an HSM as its storage
medium resulting in metadata databases with virtually huge data sets located at various
storage facilities [SS 95, BFL+95].

The Scientific Data Management approach in [HA 96, AHW+98], built on top of the
traditional file system, addresses this challenge by providing a hierarchical storage manage-
ment system to store data files, as well as a database that captures information about those
files. Thus, it provides researchers with enhanced facilities for storing, locating, retrieving,
and interpreting archived data. Similarly, the Intelligent Archive (IA3) provides scientists

3Intelligent Archive, Lawrence Livermore National Laboratory – LLNL (http://www.llnl.gov/ia/).

5.3. Multi-Media Scientific Data Sets Manipulation 87

with advanced capabilities for organizing and searching the information. One drawback to
these approaches is that keeping the metadata database synchronized with the archive can
be difficult.

5.3.1 Storage of Large Scientific and Engineering Data Sets

So far, depending on the requirements and criteria, a variety of approaches are applied to
the storage of such data. We categorize the approaches discussed in this section, addressing
the management of large-scientific multi-media data sets, into:

1. The traditional file system approach, described in section 5.3.1.1.

2. The external data link approach, defined for access to external data sources, de-
scribed in section 5.3.1.2.

3. The one-database storage approach, described in section 5.3.1.3.

The file system approach, traditionally used in the past, has shown its inefficiency es-
pecially in maintaining the links between the inter-related information pieces, searching the
available information, and comparing results of different experiments. For instance, consider
a group of scientists that every day perform different, but inter-related experiments within
the bio-informatics4 application domain. Not only the generated experiment results are
complex and cannot be managed using a relatively simple file system, but also the complete
set of information concerning each experiment cannot be properly inter-linked in order to
give the entire experiment more value. Furthermore, the results of an experiment cannot be
fully exploited if information about the experimenter is missing, neither if the input data
sets or environment parameters are not coherently available.

The second technique, external data link approach is much more effective than flat files
for storing and managing large data sets. In this case, a database catalogue is used together
with the file system, to efficiently manage distributed scientific information. The database
will provide references to all objects that are stored locally or remotely at geographically
distributed sites. This approach solves the problems related to the database overloads with
huge objects and improves the system performance. The advantages of this approach in-
cludes, among others, the provision of a mean for managing huge amounts of data, provision
of data in a secure manner, and distribution of data among geographically distributed nodes;
where the nodes are usually those in which the data is generated or where it belongs to.
[BAH 99, PWD+99].

The last approach, the so-called one-database storage approach, consists of storing both
the binary data and the other general information of the application, into the same database.
However, talking about binary data means data of very large size, which results degradation
of performance when loading this huge data into the database itself. The database catalogue
needs to be much better exploited for metadata cataloging, indexing, and proper searching
facilities.

However, the emerging scientific and large engineering applications generally require
more than what is provided by these approaches. New approaches need to be developed for
the management of large data sets in order to improve the performance of the system while
preserving the consistency of data and information visibility levels. One possible solution,
suggested in this section, is to merge and extend the second and the third approaches

4Bio-Informatics is an interdisciplinary science that studies and explores biological issues and cases using
and benefiting from the methods of informatics.

88 Chapter 5. Information Management for Scientific Applications

presented above into one distributed system consisting of a front-end catalogue database and
a back-end distributed database server. In this approach, described in section 5.3.1.4, and
referred to as the “parallel/distributed database server approach”, the meta-data (description
of the data) and the annotations are kept in the database catalog, while the large multimedia
data sets are stored at the distributed servers [BCG+97, WMP 98]. Queries on the data data
are formulated against the database catalogue, and since this is generally a small amount of
data, a good performance can be achieved by the query processing.

Following sections describe different strategies for data storage and mainly focus on an
extended approach, which deploys a parallel/distributed database server for on-line object
delivery to authenticated users/applications.

5.3.1.1 File System Approach

File systems store information in O/S files, and allow the storage of a very large amount of
data over a long period of time. However, these files are in different formats and the pro-
grams accessing them are coded in different languages, which may result in data redundancy
and inconsistency. Data in files is not automatically backed up, in order to guarantee its
availability, a recovery system must be developed and set up [GUW 02].

The file system approach is still used by applications in which, the implementation is
based on the manipulation of regular files. The developed application programs are fully
dependent on the data files (see Figure 5.2). Thus, the structure of data files is embedded
in the access programs and any changes in the structure of a file require re-compiling all
programs that access this file. This approach, used by several applications in the past,
cannot fully support many application requirements of the advanced scientific domains,
where information needs to be inter-linked, compared to other data, and easily accessed.
The file system by itself is not able to handle complex inter-linked huge data sets. Thus,
applications based on file systems are hard to maintain and to extend [BAK+00, EN 00,
GUW 02]. The inefficiencies of this approach are evident in:

• Maintaining the link between the inter-linked pieces of information, and comparing
related data in different applications,

• Supporting the ability to query and modify the data using an appropriate query lan-
guage, and their support for schema being limited to the creation of directory struc-
tures for files.

• Searching the stored information and supporting access to data items whose location
in a particular file is not known.

• Preserving the system coherency, data scattered in various files of different formats.

Application

Figure 5.2: File System Approach

5.3. Multi-Media Scientific Data Sets Manipulation 89

Furthermore, the file system approach cannot properly support the requirements for:

• Security for access to data, which can only be enforced at the level of operating systems
and not further.

• Critical concurrent access control situations to files by several users, which may not
be prevented.

• Data “sharing” though the Internet, due to the lack of proper security for access to
data and concurrency control mechanisms.

• Individual user views on the data are not supported, and data items, for which the
location within the file is not known, are difficult to locate and retrieve.

However, for simple cases inside one organization, where the data structure and the
application requirements are simple, well defined, and not expected to evolve, it may be
more desirable to use regular files. The usage of a database management system in such
a situation may involve unnecessary overhead costs that would not incur in traditional file
processing [EN 00].

5.3.1.2 External Data Link Approach

The external data link approach uses a database catalogue together with the file system,
to efficiently manage distributed multimedia data sets. In the external data link approach,
a single repository (catalogue) for meta-data and general information is maintained. The
database catalogue (also referred to as metadata database) is defined once and then accessed
by various users and applications. Scientists can use the metadata to locate and interpret
data stored in the archive, including data generated by other scientists. This metadata
provides permanent documentation of the data and becomes an integral part of the scientific
data management system. Thus, the database catalogue stores the structure of the data,
documents the contents and context of the data stored in the archive, and references the large
binary objects that are available either locally or remotely at geographically distributed sites
(Figure 5.3). This approach solves the problems related to centralized database overloads
with huge objects, provides better retrieval performance, and improves the access to the
data through a single database catalogue.

Database
Catalogue

Application

Figure 5.3: External Data Link Approach

In addition to the main characteristics listed above, the usage of this approach provides
scientific applications with the following advantages [BAH 99, PWD+99]:

90 Chapter 5. Information Management for Scientific Applications

• Data is stored separate from the access programs (program-data independence).

• Data is stored at one place, either at the point where it is generated or where it belongs.

• Data is distributed so that it can be physically located closest to its intensive usage.

• Data is visible from any node within the cooperation community.

• Data distribution reduces the access bottlenecks at individual sites.

However, there are of course several limitations associated to this approach. The first
problem faced when using this approach relates to the database catalogue consistency. In
general, the referenced external objects are stored independently of the database catalogue.
This later only contains a simple link to the external objects that are stored as regular files
on different local and remote systems. Thus, these files can be updated or removed by local
users within each system, without notifying the database catalogue maintainer, which may
result to inaccurate or incorrect reference links.

The problem of database catalogue consistency could be addressed by developing a spe-
cific module that automatically and periodically checks the availability of the referenced
objects against the database catalogue content, then the database catalogue will be up-
dated regarding the new changes. If an external referenced object is missing for instance,
the link to it will be removed from the database catalogue in order to avoid inaccurate refer-
ences. Furthermore, log information can also be gathered and stored. The log information
can support keeping track of the system updates based on some comparison of the size, the
date, and the author of the referenced external objects.

A second problem concerns the security issues for the stored objects, where a more critical
situation relates to data privacy and user visibility rights. Under normal considerations the
files are usually hold in a public location, so when users request information from the system,
their requests are evaluated against the database catalogue and they will be provided with
the links to the proper objects that they can access and retrieve via http, ftp, and other
data transfer protocols. Thus, typically the objects are not secure.

To solve the security problem within this approach, some applications develop a number
of remote file servers, through which, the file access and user authentication are controlled
based on the database catalogue information [BAH 99, PWD+99].

5.3.1.3 One-Database Storage Approach

As depicted in Figure 5.4, the one-database storage approach consists of storing the binary
objects together with their meta-data and the other general information of the application,
within the same database (being centralized or distributed) in a unified way, and typi-
cally in digitized format. This approach requires substantial re-engineering or extension
of traditional DBMSs to directly query and manipulate the contents of the files stored in
the database. However, this problem is not a barrier for research anymore, since several
database systems (e.g. Matisse5, Oracle6, Jasmine7, Informix8, and DB29) already support
the storage of multi-media and binary objects of different formats (e.g. postscript, images,
audio, video, documents, etc.). The storage of these types of data is made possible by the
DBMSs via a set of binary large objects (the so-called blobs).

5Matisse: The Object Developer’s Database System (http://www.fresher.com).
6Oracle Database System (http://www.oracle.com).
7Computer Associatestm-Jasmine (http://www.cai.com)
8Informix r© information management solutions (http://www.informix.com)
9IBM DB2 Universal Database System (http://databases.about.com/cs/db2/).

5.3. Multi-Media Scientific Data Sets Manipulation 91

The one-database-storage approach solves the problem of keeping the metadata database
synchronized with the archive, by making the metadata and the archive one-and-the-same.

Application

Figure 5.4: One-Database Storage Approach

However, here the binary data refers to data of huge size, where even the loading of these
objects in the database affects the database performance, which can be better exploited for
cataloging, indexing, and searching facilities. Another problem may be the access mecha-
nisms to these objects, which require extra encoding/decoding facilities (embedded plug-ins)
to be supported by the database software in order to properly manage the compact data
formats of the binary objects.

In addition, the studies made on engineering and management of data from different
applications in the domain of music industry [BAH 99a, BAH 99b], water distribution man-
agement [ABH 98a], biology and medicine [BAS+99], show that the information dealt with
is of two main categories: the general information (so-called meta-data) and the raw data.
The meta-dada represents the description of a wide variety of data, which is accessed by a
large number of users; where the user queries are issued against the meta-data. The raw
data, on the other hand, is generally accessed and processed by the end-user scientists and
experimenters.

From the usage point of view, the one-database storage approach that stores large binary
objects in the same database together with the general information of the application is
easier and more desirable. However, it reduces the database performance and efficiency.
Let us consider one example application that is now being developed at the University of
Amsterdam. This application is focused on the management of large data sets and the
information handling in a bio-medical10 application [BKS 98], where the data originates
for instance either from a simulation experiment or from medical scanners (CAT, MRI)11.
In such applications, the complete information about scans are “slice wise” stored in the
database, and delivered at run-time, on demand. The largest objects that are stored in the
database are the raw data sets for the slices, used for on-line simulation, visualization and
exploration. Considering a normal bio-medical application that deals with dynamic grids of
1024 x 1024 16-bit pixels with 5000 slices over 50 time steps, the amount of raw data reaches
several hundreds of gigabytes (around 524 GB). Our detailed study on these applications
also shows that the general information only requires small disk storage capacity compared
with the raw data that is, in most cases, in the range of hundreds of times larger.

10Bio-medical Engineering is an interdisciplinary field between medicine and engineering, which applies
the most advanced technologies, principles, and skills developed in engineering to the world of medicine.

11CAT stands for Computerized Axial Tomographic and MRI stands for Magnetic Resonance Imaging.

92 Chapter 5. Information Management for Scientific Applications

5.3.1.4 A New Approach: Parallel/Distributed Database Server

In many collaborative application domains, for instance, the electronic commerce and the
large scientific applications, access to databases is concentrated on large structured (and
unstructured) objects of “value”, and their related information (meta-data). In order to
gain better database performance and access efficiency, learning from previous approaches,
an alternative solution would be the utilization of a “distributed database server” to manage
the large binary objects, separate from the general information. The proposed architecture
deploys a parallel/distributed database server, that delivers objects (files) based on user
authentication [BAH 99a, PH 98].

Figure 5.5 illustrates the architecture deployed within the parallel/distributed database
server for scientific applications, where the followed strategy for data management takes
advantages of both the external data link approach and the one-database storage solution.
This approach uses a database repository to store the general information and a paral-
lel/distributed database server (instead of file server) to store large objects. The utilization
of database systems instead of file servers in such architecture enforces the issues related
to security for access, concurrency control, and information visibility rights mentioned in
previous sections 5.3.1.1 to 5.3.1.3.

Application

Query
Processor

Storage
Manager

Transaction
Manager

User Queries
Database System

DBMS Software

Repository &
Metadata DB

DB

DB

DB
Database

Server

Figure 5.5: Architecture for the Parallel/Distributed Database Server

The parallel/distributed database server is well suited when high security is required
(objects are encrypted in the database as lists of bytes that are difficult to access due to
database security and hard to decode since they require special encoders/decoders that are
only delivered to authorized users). This feature is very important for scientific applications,
since it assures a minimum level of security for the private data, where users of the system
will also be authenticated by the database server before getting served.

The parallel/distributed database server provides the proper base framework that can
be adapted to handle huge amounts of raw scientific data. With this architecture, the
database nodes of the distributed server are inter-connected, making it possible for specific
experimenters to connect to any database server within the distributed server, and request an
object, without the need to know where the object actually resides. If the request cannot be
handled locally at that database node, it is automatically broadcasted to the other database
nodes, and the result is forwarded back to the user.

5.3. Multi-Media Scientific Data Sets Manipulation 93

Database
Catalog

Web
Interface

Database
Server

User
Interface

Common
Access Point

Parallel/distributed
database Server

End Users

Web-based
Application

Remote User

WWW
Browser

Database
Server

Database
Server

Q
ue

ry
P

ro
ce

ss
or

Internet

WWW
Browser

Storage
Manager

Figure 5.6: Parallel/Distributed server architecture: an Application Case

The followed approach is also suitable in the sense that the database can be used for
different purposes. Figure 5.6 presents an application case of this architecture, in which,
for instance in a Virtual Laboratory environment, the outside users and application inter-
faces are based on, and supported, through the database catalogue, while the scientists’
experimental interfaces are based on and supported by both the database catalogue and the
parallel/distributed database server.

5.3.2 Scientific Data Archiving and Cataloguing Using Dublin Core
Standard

Scientific and industrial organizations are nowadays focusing on building technology infras-
tructures that are cost-effective and conform to their application practices, in which the
scientific meta-data plays an increasingly important role, and brings a considerable value
in terms of information retrieval, application maintenance, data integration, and support
for user requests. Such infrastructures maximize the sharing and re-use of data, eliminate
redundancy, and facilitate application integrity [DCMI 99, BA 00].

To improve the applications’ flexibility and the end user’s usability, current systems
must provide information about the content and the quality of the data they hold and
manage. This information can be provided through the so called meta-data repositories [BA
00]. Scientific meta-data is information about the application data, that gives descriptive
information about the context, conditions, and characteristics of the data. Thus, meta-
data serves as the binding mean that ties the various tools and technologies together at the
application level.

This section aims at the design and development of a database system, to archive a
wide variety of large scientific data sets. The process of data storage/acquisition, from
different sources, within scientific applications, can follow one of the two approaches, which
are presented and described in section 4.5.1.

1. The first approach builds a specific two-side-dependent interface, to directly store the
data from its origins into the corresponding databases.

94 Chapter 5. Information Management for Scientific Applications

2. The second approach uses an intermediate step by storing the data in an intermediate
standard format (probably OIF and/or XML). The standard format can be loaded
into the compliant database systems.

The main focus of this section is to apply the second approach to scientific data, using
the Dublin Core Meta Data Standard [WKL+98]. The Dublin Core (DC) standard describes
better the content of scientific data and the context related to its generation. This section
addresses the design of a data archive, using Dublin Core, as follows:

1. First it gives a brief description of the Dublin Core Meta Data Standard; a specific
higher-level cataloguing/archiving schema for the scientific raw/processed data.

2. Second, it addresses the object-oriented representation of the Dublin Core meta-data;
a representation that better suites to scientific applications and makes the definition
of the DC elements and the relationship among them more elaborate.

3. Third, it extends the object-oriented DC model with additional meta-data terms; in
order to support the scientific applications regarding their experimentation and data
processing.

5.3.2.1 Dublin Core based Meta Data Design and Implementation

The DC Meta-data Initiative [WKL+98] is a cross-disciplinary international effort to develop
mechanisms for the discovery-oriented description of diverse resources in electronic environ-
ment. The Dublin Core Element Set comprises fifteen elements [DCMI 99], which together
capture a representation of essential aspects related to the description of data sources (e.g.
publishing). The meta-data definitions, presented in [DCMI 99], and provided in Table 5.1,
include both the conceptual and representational form of the Dublin Core elements. The
Label provides a mnemonic single-word specification for the DC meta-data Elements; labels
are simple enough to identify the corresponding elements in the schema. While, the Defi-
nition captures the semantic descriptions for these elements. For simplicity reasons, some
detailed definitions are summarized.

5.3. Multi-Media Scientific Data Sets Manipulation 95

Element Label Definition

Title Title A name given to the resource, by which the resource is formally
known.

Creator Creator An entity primarily responsible for making the content of the re-
source. The Creator entity can be a person, an organization, or a
service.

Subject &
Keywords

Subject The topic of the resource content, expressed as keywords, key
phrases or classification codes.

Description Description An account of the resource content. Description may include but
is not limited to: an abstract, table of contents, reference to a
graphical representation of content or a free-text account of the
content.

Publisher Publisher An entity responsible for making the resource available. Examples
of a Publisher include a person, an organization, or a service.

Contributor Contributor An entity responsible for making contributions to the content of the
resource. Examples of a Contributor include a person, an organiza-
tion, or a service.

Date Date A date associated with an event in the life cycle of the resource.
Typically, the Date is associated with the creation or availability of
the resource. The date value is defined in a profile of ISO 8601.

Resource
Type

Type The nature or genre of the resource content. Type includes terms
describing general categories, functions, genres, or aggregation lev-
els for content.

Format Format Specifies the physical or digital manifestation of the resource. For-
mat may include the media-type or dimensions of the resource and
may be also used to determine the software, hardware or other
equipment needed to display or manage the resource.

Resource
Identifier

Identifier An unambiguous reference to the resource within a given context.
Example of formal identification systems include URI, URL, ISBN,
and DOI (Digital Object Identifier).

Source Source A Reference to a resource from which the present resource is de-
rived. The resource is referenced by means of a string or number
conforming to a formal identification system.

Language Language A language of the intellectual content of the resource. The
values of the Language element include a two-letter Language
Code (ISO639), followed optionally, by a two-letter Country Code
(ISO3166). For example, ’en’ for English, ’fr’ for French, or ’en-uk’
for English used in the United Kingdom.

Relation Relation A reference to a related resource. The resource is referenced by
means of a string or number conforming to a formal identification
system.

Coverage Coverage The extent or scope of the content of the resource. Coverage in-
cludes spatial location (a place name or geographic coordinates),
temporal period (a period label, date, or date range) or jurisdiction
(such as a named administrative entity).

Rights
Manage-
ment

Rights Information about rights held in and over the resource. The Rights
element defines the rights management statement for the resource,
or references a service providing such information. Rights informa-
tion often encompasses IPRs and Copyrights.

Table 5.1: Dublin Core: Elements Description

96 Chapter 5. Information Management for Scientific Applications

5.3.2.2 Dublin Core Object Modeling

Current implementations for the Dublin Core model are addressed by “pseudo-hierarchical
dot notation” (e.g. DC.Creator.Email) or in best cases, using the relational model. How-
ever, complex applications within e-science domains, require data models to properly reflect
the real world entities similarly to their existence in reality. To properly model the Dublin
Core elements and benefit from the utilization of the DC model, we address extension of the
DC meta-data definition in terms of object-oriented modeling and object references. For in-
stance, the object oriented modeling of the creator, publisher, contributor, and rights, better
suits in scientific applications by allowing the creation of a more comprehensive relationships
among objects. The object-oriented modeling of these elements allows their representation
as real-world entities, and makes them related to each other via the means of relationship
associations.

Figure 5.7 illustrates the design of an object-oriented database definition for Dublin
Core schema elements that we introduce for use within the VL project, using the Unified
Modeling Language [UML 98]. The Object Definition Language (ODL) schema for this
meta-data is also provided as a subset of the enhanced object-oriented Dublin Core ODL
schema definition, presented in Table 5.2. Users of Dublin Core can find more details and
useful references related to the use of Dublin Core in [Hill 01].

DC

Title: String
Subject: String
Description: String
Date: Date
Type: String
Format: String
Identifier: String
Source: String
Language: String
Relation: String
Coverage: String

Entity

Phone: String
Fax: String
E-Mail: String

Address

Street: String
Number: String
Post Code: Short
Zip Code: Short
City: String
Country: String

Right

IPR: String
Copyright: String
Property: String

0..* Rights

Rights For 1..*

Address

Address of 0..1

0..*

Person

Last Name: String
First Name: String
Title: String

Organization

Name: String
Activity Type: String

0..* Creator Of

Creator 0..*

0..* Publisher Of

Publisher 0..*

0..* Contributor Of

Contributor 0..*

Figure 5.7: An Object-oriented schema for the Dublin Core meta-data

5.3.2.3 Enhanced Dublin Core Data Model

In order to satisfy the complex requirements for advanced scientific applications in terms
of scientific data representation, additional meta-data vocabularies related to scientists and
their performed experiments need to be added to the DC data model. As such, the extensions
we introduce must allow to distinguish between raw and processed data, to specify the
different kind of processes used for data manipulation, to indicate the devices from which
data is being collected, and to support the reviewing for scientific experiment results.

5.3. Multi-Media Scientific Data Sets Manipulation 97

Figure 5.8 illustrates a generic object-oriented schema representation for the VL data
archiving. This schema is based on and enhances the DC meta-data model presented in
Figure 5.7. The extensions to this schema first allow the distinction between raw and
processed data, and second provide facilities for reviewer’s comments, processing methods
definition, and specifications about the devices generating this data.

The extended part of the DC schema in Figure 5.8 presents the necessary additional
entities required for the VL experimental environment. For instance, a Process is defined by
a name, a description, and a set of parameters; it uses one or several raw data as input, and
produces a set of processed data. It is possible that one or more persons review the produced
data. The DC schema elements are related to each other through a number of relationships
describing the associations between these entities. The multiplicity range (cardinalities) of
the relationship associations define constraints on the data, a process for instance must have
at least one input (raw data) and produce one or more output results (processed data).

RawData

Content: Binary
Comment: String

ProcessedData

Content: Binary
Comment: String

1..* Uses RawData

RawData Used in

Process

Name: String
Description: String
Parameters: String

Device

Name: String
Description: String

Review

Comment: String
Date: Date

1..1 Generated from

Generates

1..* Input

Input For 0..*

1..* ProducedBy

Produces 1..*

1..* Review For

PReview 0..*

0..*

Review By Reviews

1..*

0..*

0..*

Enhanced - DC

Archived Element

Title: String
Subject: String
Description: String
Date: Date
Type: String
Format: String
Identifier: String
Source: String
Language: String
Relation: String
Coverage: String

Entity

Phone: String
Fax: String
E-Mail: String

Address

Street: String
Number: String
Post Code: Short
Zip Code: Short
City: String
Country: String

Right

IPR: String
Copyright: String
Property: String

Address

Address of 0..1

0..*

Person

Last Name: String
First Name: String
Title: String

Organization

Name: String
Activity Type: String

0..* Creator Of

Creator 0..*

0..* Publisher Of

Publisher 0..*

0..* Contributor Of

Contributor 0..*

0..* Rights

Rights For 1..*

Figure 5.8: Enhanced Object-oriented schema definition for the VL archiving environment based on the
Dublin Core standard

Table 5.2 presents the ODL schema definition for the enhanced object-oriented DC meta-
data, illustrated in Figure 5.8. The provision of the ODL definition presents the advantage
of direct loads/creation of the DC schema into any database that is ODMG compliant. The
use of enhanced Dublin Core metadata for modeling scientific applications has proven its

98 Chapter 5. Information Management for Scientific Applications

validity via its deployment, as a base, for the data definition within different applications,
which are being developed within the VL information management framework. Among these
scientific applications, we enumerate a generic model for experimental environment [KAH
01], DNA micro-array and gene expression [KAB+01], Mass Spectrometry metadata analysis
[EAG+01], and information management for material science applications [FAE+01].

//Extended Dublin Core ODL Definition
//-------------------------------------
interface ArchivedElement : persistent {

attribute String Title = ""
mt_make_entry "make-entry";

attribute String Subject = ""
mt_make_entry "make-full-text-entry";

attribute String Description = "";
attribute Date Date = "";
attribute String Type = "";
attribute String Format = "";
attribute String Identifier = "";
attribute String Source = "";
attribute String Language = "";
attribute String Relation = "";
attribute String Coverage = "";
relationship List<Entity> Creator

inverse Entity::CreatorOf;
relationship List<Entity> Publisher

inverse Entity::PublisherOf;
relationship List<Entity> Contributor

inverse Entity::ContributorOf;
relationship List<Right> Rights

inverse Right::RightsFor;
};
interface Right : persistent {

attribute String IPR = ""
mt_make_entry "make-entry";

attribute String Copyright = "";
attribute String Property = "";
relationship List<ArchivedElement> RightsFor[1,-1]

inverse ArchivedElement::Rights;
};
interface Entity : persistent {

attribute String Phone = "";
attribute String Fax = "";
attribute String EMail = "";
relationship List<Address> EntityAddress[0,1]

inverse Address::AddressOfEntity;
relationship List<ArchivedElement> ContributorOf

inverse ArchivedElement::Contributor;
relationship List<ArchivedElement> PublisherOf

inverse ArchivedElement::Publisher;
relationship List<ArchivedElement> CreatorOf

inverse ArchivedElement::Creator;
};
interface Person : Entity : persistent {

attribute String LastName = ""
mt_make_entry "make-entry";

attribute String FirstName = "";
attribute String Title = "";
relationship List<Review> Reviews[0,-1]

inverse Review::ReviewedBy;
};
interface Organization : Entity : persistent {

attribute String Name = ""
mt_make_entry "make-entry";

attribute String ActivityType = "";
};

interface Address : persistent {
attribute String Street = ""

mt_make_entry "make-entry";
attribute String Number = "";
attribute Short PostCode ;
attribute Short ZIPCode ;
attribute String City = "";
attribute String State = "";
attribute String Country = "";
relationship List<Entity> AddressOfEntity

inverse Entity::EntityAddress;
};
//Dublin Core Meta Data Extention
//-------------------------------
interface Review : persistent {

attribute String Comment;
mt_make_entry "make-entry";

attribute Date Date;
relationship List<Person> ReviewedBy[0,-1]

inverse Person::Reviews;
relationship List<ProcessedData> ReviewFor[1,-1]

inverse ProcessedData::Preview;
};
interface ProcessedData:ArchivedElement:persistent {

attribute Binary Content;
attribute String Comment;
relationship List<Review> Preview

inverse Review::ReviewFor;
relationship List<Process> Uses[1,1]

inverse Process::UsedFor;
relationship List<RawData> UsesRawData[1,-1]

inverse RawData::RawDataUsedIn;
};
interface RawData : ArchivedElement : persistent {

attribute Binary Content;
attribute String Comment ;
relationship List<Process> InputFor

inverse Process::Input;
relationship List<ProcessedData> RawDataUsedIn

inverse ProcessedData::UsesRawData;
relationship List<Device> GeneratedFrom[0,1]

inverse Device::Generates;
};
interface Process : persistent {

attribute String Name = ""
mt_make_entry "make-entry";
attribute String Description "";
attribute String Parameters "";
relationship List<RawData> Input[1,-1]

inverse RawData::InputFor;
relationship List<ProcessedData> UsedFor

inverse ProcessedData::Uses;
};
interface Device : persistent {

attribute String Name = ""
mt_make_entry "make-entry";
attribute String Description "";
relationship List<RawData> Generates

inverse RawData::GeneratedFrom;
};

Table 5.2: Enhanced ODL schema for the VL archiving environment based on the Dublin Core standard

5.4. Universal Database Access - Based on Standards 99

5.4 Universal Database Access - Based on Standards

The work presented in this section describes the universal database access interface (called
UDBA [Ben 00a]). The UDBA is a web-based framework, which is achieved through a set
of functions for data and meta-data manipulation, that are supported by the combination
of database technologies with current standard tools for data access such as ODBC and
JDBC. The provision of these functions for accessing the internal structure of a database
(data and schema) facilitates the process of creating intelligent web-based and non web-
based applications. Therefore, universal database access is achieved via the development of
generic tools through which, users will be able to access several data sources regardless of
their internal structure, data types, and location.

The development of universal database access interface brings three main advantages to
the work in the area of information management and interoperation.

1. First, it presents a flexible interface to easily manage the database schema and objects
through a web environment to which ordinary users are quite familiar.

2. Second, it allows to better explore the advanced features supported by the object-
oriented/object-relational DBMSs and provides means to improve some of these fea-
tures supported by their object database connectivity mechanisms (e.g. class inheri-
tance, object identifier, and cross-reference relationships).

3. Third, it extends the implementation of the data types as required by complex scientific
applications such as the multi-media information, large data sets, and complex inter-
linked objects.

The implementation of the universal database access interface is based on the following
software technologies:

• Matisse object-relational DBMS [Mt 01] for schema representation and data storage.

• Active Server Pages programming model [ASP 01], which allows dynamic and inter-
active Web pages to be generated on the fly from the Web server.

• ActiveX Data Objects [ADO 01] programming extension for database connectivity.
The primary benefits of ADO are ease of use, high speed, and low memory overhead.

• Matisse ODBC driver for accessing the heterogeneous databases, structure and objects,
via a common interface

• JavaScript and VBScript languages, which overcome the limitations of HTML and
allow the creation of functions, embedded within HTML code.

Using the universal data access interface, users do not need to know much about the data
structure of the underlying data source. Users are only asked to specify the data source’s
name. Then the application connects the user to the specified database, reads the schema
structure, and automatically presents to the user, in a very flexible manner, a set of concepts,
through which he/she can freely navigate and explore the database structure (schema) and
its instances (data).

For the VL information management system, the universal database interface provide a
facility similar to what the database vendors deliver as a “client interface” to manage the
data and the schema for the database that runs on the DBMS server. The main difference
is that the universal database access interface can be considered as a complementary tool

100 Chapter 5. Information Management for Scientific Applications

to the specific database interface that can also be accessed by different users through the
Internet. Therefore, universal database interfaces brings to the DBMS server the advantage
of: (1) being able to run on a web server environment, which makes it platform independent
and widely used, and (2) since the UDBA interface is built on top of the middleware and
standard solutions, it can be considered as a generic framework that can interface many
databases that are compliant to standards.

Author

Last Name: String
First Name: String
Title: String
Phone: String
Fax: St ring
E-mail: String

Journal

Journal: String
Vo lume: String
Issue: String

Publication

Title : String
Year: Short
URL: String
Pages: Short

0..*Writes

Written By0..*

Report

City: String
Number: Short
Institution: String

Paper

Editor: String
ConfName: String
ConfLocation: String
Publisher: String
Edition: String
Date: Date

Figure 5.9: Example simplified Data Model for Authors and Publications

Figure 5.10 presents a screen shot of the universal database access interface and illustrates
the four main components of this interface, namely, the Database Connection , the Query
Execution , the Results Presentation , and the Object Creation modules. The example,
shown is this section, is based on a database for Authors and Publications, for which a
simplified model is presented in Figure 5.9.

As depicted in Figure 5.10, the implementation of the UDBA Web interface utilizes the
frames mechanism. Therefore, the interface consists of four browsing areas (frames), each
handling a set of sub-tasks of the system. The use of frames in this context allows the proper
representation of complex objects and facilitates the navigation among those objects that
are related to each other. The four frames of the UDBA interface consist of (1) database
connection (at the top left), (2) schema exploration and query formulation (at the top right),
(3) results presentation (at the bottom left), and new objects creation (at the bottom right).

The general steps for information access through the universal database access, pointed
to in the figure by circled numbers 1 to 4, are briefly described below. Further details of the
functionalities provided by the universal data access are described in section 5.4.5.

1. First, the user has to specify a data source name, and press the Connect button. The
interface then connects to the corresponding database, reads its internal structure,
and presents to the user a friendly interface. The database Connection Module han-
dles this step, and provides the user with the complete structure of the underlying
database through which he/she can freely navigate among the database components
(tables/classes), select the desired items (or specify a query), and specify his/her de-
sired output format for the results.

2. Second, the user has either to select a class/table name or specify an SQL query to be
submitted to the data source server, choose his/her preferred output format for the

5.4. Universal Database Access - Based on Standards 101

results, and press the Query Execution button. The Query Execution module extracts
user inputs, checks for syntax and semantic errors, and builds the corresponding query
to be sent to the database.

3. Third, the query results are returned to the user. The Result Presentation module
allows the presentation of the query results to the user according to his/her desired
format. The output format can be HTML, in the form of a table, or using a standard
data exchange format such as XML and OIF. At this stage, the user can also choose
to add/create a new object for the selected data type into the database.

4. Finally, the user has the possibility to create new objects in the database. The Ob-
ject Creation module provides a flexible facility to dynamically create objects and
store them into the database. This facility is provided to the user within the data
representation module.

Figure 5.10: Universal Database Access Interface

Please notice that for every step, there is a module supporting its functionality. These
modules that constitute the universal database access framework are further described in
more details within the following sections.

102 Chapter 5. Information Management for Scientific Applications

5.4.1 Database Connection Module

As depicted in frame (1) of Figure 5.10, the connection to a database server is simply
done by specifying a database name and requesting the connection12. When activating the
connection module, this later automatically connects to the specified database, reads the
structure of its schema, and organizes it in a simple format for the user. The format consists
of:

• A pull-down scroll menu consisting of all the database classes, from which, the user
can choose one class to browse or manipulate its instances.

• An input text area, where the user can specify an SQL statement to be submitted
to the database. The SQL statement can be a select query, an update statement, an
insert or a delete command.

• A pull-down list, consisting of all possible output representation formats for the se-
lected class objects.

• The query execution button through which, the user validates and activates the query
execution process.

5.4.2 Query Execution Module

The query execution module extracts the user input/selection, checks for errors, builds the
corresponding query according to the user request, and launches the query execution process.
The query execution module performs according to the following strategy:

• If an SQL statement is specified, it executes it without checking the class name in the
pull-down menu

• If a database class/table name is selected, the query execution module reads the se-
lected class name from the pull-down scroll menu, constructs the proper select query,
for instance select OID, * from <class name>, and performs the query execution.

• If neither of the two inputs is specified, the query execution module prints a warning
message asking the user to either select a class name or specify an SQL statement.

5.4.3 Results Presentation Module

The result presentation module extracts the corresponding output information for the user’s
requests and organizes the query results according to the specified format. Different layout
possibilities are illustrated for presenting the information to the user. The user can choose
either an HTML presentation, an XML format, an Object Interchange Format (OIF), or a
table format presentation.

The result presentation module builds a dynamic output for presenting information to
the end user. The presented output is dynamic in terms of columns and lines; and is based
respectively on the selected attributes, and on the objects available for the chosen class.

Frame (3) in Figure 5.10 illustrates the output format for publications and authors using
an HTML format. While, another example is presented in frames (3) and (4), which show
on the left hand side the ArchivedElements with the XML format, and on the right hand

12Specification for the underlying database name, location, and access mechanisms are supported and
provided via the ODBC data sources facilities.

5.4. Universal Database Access - Based on Standards 103

side the IPRs13 related data using the table output format. Query results are represented on
the screen and one page at a time, through which the user can navigate and scroll forward
and backward.

5.4.4 Object Creation Module

In addition to the information retrieval and data representation, the dynamic creation of
new instances for these classes that are being explored, can be achieved through the Add
New<object> button, which generates the corresponding form for the data input and loads
it into the database.

The object creation module allows the generation of dynamic forms for input to be filled
up by users, to create new instances. Input forms are based on the structure of the current
class that is being explored. Frame (4) in Figure 5.10, for instance, presents an input form
for creating a new instance of the class Paper.

After filling the input form, the data specified by the user will be submitted to the
database in order to create a new object (instance) for the considered class. Submission of
the input data is accomplished by the Commit Event module, which dynamically reads the
user inputs, builds the SQL command, and inserts the new object into the database.

In case of any input data errors (e.g. wrong type, invalid range), these errors will be
identified by the system and reported to the user. Therefore, the updates to the database
are not committed unless the user fixes all errors. At this level, providing the user with the
possibility to go one screen backward and correct his/her errors (without loosing any data),
facilitates the objects creation process.

5.4.5 Further Benefits

In addition to the various advantages of the UDBA framework as presented within the
previous sections, in the following sub-sections, we will provide more details and exemplify
the three concepts that illustrate the strength simplicity, openness, and flexibility of the
universal database access framework.

5.4.5.1 Dynamic Query Definition and Results Presentation

The universal database access framework presents a dynamic facility for query definition and
results presentation. The flexibility of the framework is made possible through the run-time
access to data and schema structures of the underlying data source.

The flexibility in data representation is supported in terms of database structure char-
acterization, object instances creation, and layout for the output results formatting.

• Depending on the defined attributes within each class, the user can select a set of
properties and constraints to be considered for the query execution.

• Through the SQL statement, the user can also restrict the objects to be retrieved, via
the specification of the condition predicates.

• According to the user specifications for the layout in data presentation, the results of
a query are formatted to fit the selected formatting template.

13ArchivedElement and IPR concepts are defined in section 5.3.2.3

104 Chapter 5. Information Management for Scientific Applications

The flexibility for query specification and conditions definitions are provided through the
support of SQL commands for INSERT, UPDATE, DELETE, as well as for database schema
manipulation. The following examples present in more details these features through a set
of examples from the ‘Authors and Publications‘ data model defined in Figure 5.9:

• Creating new instances for classes defined within the database schema are supported
through the INSERT command. For instance, the statement: INSERT INTO Paper
(Title, ConfName) VALUES (’MegaStore’, ’DEXA 2000’), creates a new instance of the
class Paper and assigns the values MegaStore and ‘DEXA 2000’ respectively to the
attributes Title and ConfName.

• Updates to the database are supported through the UPDATE query statement. For
instance, the SQL statement: UPDATE Paper SET (Pages, ConfLocation) VALUES
(‘869-878’, ‘London, UK’) WHERE title LIKE ’MegaStore%’, assigns new values ‘869-
878’ and ‘London, UK ’ for respectively Pages and ConfLocation of the class Paper,
when the condition title “LIKE ’MegaStore%”’ is satisfied.

• Removing objects from the database is supported through the DELETE command.
For instance, the simple delete query: Delete Paper where Title = ‘ ’, removes all
instances of the class Paper for which the Title is empty, thus, it can be used for
instance to clean the database from some incomplete data.

• Exploring the structure of the underlying database is supported through a set of con-
cepts for schema manipulation and is implemented using the Matisse DBMS.

5.4.5.2 Multi-level Navigation Through Relationships

Complex Objects in scientific and system engineering applications are characterised by a set
of relationship properties that link related objects together and form a network of entities.
A good example for complex inter-linked entities is the conceptual schema for the Virtual
Laboratory archiving environment, presented in section 5.3.2.3. In this environment, for
instance, the entity ArchivedElement is linked to several entities such as Publisher, Creator,
and Right. These entities are inter-linked though the concept of relationship definition.

During a user session and along his/her navigation, the universal database access inter-
face automatically determines all the links among the objects in the database and provides
the possibility of navigational access among them. An example that illustrates the naviga-
tional facility provided by the framework is presented in Figure 5.13 (frames 3 and 4), in
which the presented results are also augmented with the relationship links from each object
to all other objects that are related to it. For instance the possibility to navigating from
an ArchivedElement object and explore other objects related to it (e.g. Right, Contributor,
Creator, and Publisher). These reference links allow the user to easily navigate through the
database objects and freely explore the complete scientific data sets as they exist in real
world.

The navigational mechanism of the system is implemented via the relationship capability
offered by the Matisse DBMS14. This mechanism provides fast and direct access among
inter-linked objects; thus, it eases the user interaction and navigation through the database
objects.

14In addition to its support for SQL ANSI standards, the Matisse ODBC driver provides extra features
related to object-orientation and multi-media data manipulation.

5.5. Data Access Security and Information Visibility (Safe/Reliable Data Export) 105

5.4.5.3 Multi-Task Modules

The universal database access interface is an advanced Web framework that provides a flexi-
ble interface based on the knowledge acquired from the database structure, object instances
characterization, and the output results presentation.

The development of the UDBA framework, presented above, benefits from modular de-
sign and implementation. Its complete development consists only of four modules that
perform all the tasks required for the schema and data manipulation. The multi-task func-
tionality of each of these modules is supported via a set of parameters, which are dynamically
adjusted based on the data characterization and users’ specifications. The Result Presen-
tation module for instance, is responsible for representing in a simple and flexible way any
type of data generated either by a select query or an update statement, according to the
user’s specifications and preferences. Similarly, the Object Creation module is a flexible
component, which generates correspondent input data forms for classes defined within the
database schema, and builds the proper insert query to be sent to the database, regardless
of the structure of the information and the size of data that it contains.

5.5 Data Access Security and Information Visibility
(Safe/Reliable Data Export)

The work described in this section concentrates on designing and implementing an interface
to support role-based access rights facility, allowing organizations to share part of their data
with certain other organizations. More details concerning a full description regarding data
access control principles and mechanisms is outside the scope of this thesis, the reader can
refer to the various approaches that have been published over the past few years. Among
the published proposals, [SS 94] addresses principles related to access control, [Bald 90]
focuses on naming/grouping privileges to simplify security management in large databases,
and [SC 96, SF 94, Tho 91] proposed access control extension mechanisms to support role-
based models. Other publications concentrate on the applicability of a role-based data
access control to solve security problems in Intranet environment [TC 97], and to support
information access rights and visibility levels in Virtual Enterprises [FAG+00, GAH 01].

The safe/reliable data export framework is a user-friendly web interface to access and
retrieve a wide variety of data, based on predefined export schemas15. The access to data,
through those export schemas, defined on top of existing databases, is achieved via a role-
based access control.

The implementation of the safe/reliable data export interface is based on the universal
database access framework presented in section 5.4, and extends it to support access rights
and visibility levels to a subset of information, based on export views definition and user’s
(organization’s) roles assignment. Roles are used to simplify the description of allowed access
characteristics to database objects. The approach for granting user permission to access a
subset of the information within each application is achieved through role assignment.

The scope of access to database objects using the Safe/Reliable data export is achieved
through the following steps:

• Create roles according to the job functions (e.g. within the organizations),

15Export schemas definition within this section refers to views definition augmented with the concept of
role-based access control.

106 Chapter 5. Information Management for Scientific Applications

• Grant users permissions (access authorization) based on these roles,

• Define export views based on database objects, and

• Assign the defined export views to the roles on the basis of their responsibilities.

The remaining two sections illustrate the adaptation of a role-based access control to
existing applications, in which section 5.5.1 addresses a role-based access control definition,
a facility helping the application developer in defining the necessary mechanisms for creating
a role-based access control; while section 5.5.2 provides an interface for data publishing based
on predefined export views and users authentication.

5.5.1 Role-based Access Control Definition

Figure 5.11 illustrates the schema definition for the meta-data characterising the role-based
access control to export views. This schema is defined for the implementation of the
safe/reliable data export interface. As described later in this section, when necessary, this
generic data model will be augmented to different database descriptions, within several ap-
plications of the VL, in order to control and restrict external access to their data. In order
to support the database administrator with the creation of export views based on the fusion
of several database objects, a class named Element is defined to cope with this issue, thus,
the designed model supports the definition of export views based on several joint classes.

Export View

View ID: Short
View Name: String
View Desc.: String

User

User ID: Short
UserName: St ring
Password: String
User Desc: String

ElementView View Elements

0..*View Roles

Role Views

1..*

0..*

1..*

Element

Select Spec: String
Where Spec: String
Fro m Spec: String

Role

Role ID: Short
Role Name: String
Role Desc: String

User Roles Role Users

1..*

1..*

Figure 5.11: Schema Definition of the role-based Access Control with Export Views

The implementation of the safe/reliable data export framework is supported via the
development of related tools to create export views, define roles, and assign users to those
roles based on their privileges and access rights. As an example of these tools, we present in
Figure 5.12 a screen shot of a user-friendly interface to create export views (similar interfaces
are also available for defining users permissions and roles). This example also illustrates the
steps involved in defining export views, including:

1. The database administrator (DBA user) connects to a given data source by simply
specifying the database name and pressing the Connect button.

2. DBA user selects a class name from a list provided by the system. The list corresponds
to the set of classes extracted from the structure of the underlying data source.

5.5. Data Access Security and Information Visibility (Safe/Reliable Data Export) 107

3. DBA user proceeds with the export view creation, by selecting a set of attributes and
specifying optional condition predicates.

Figure 5.12: Interface for Views Definition

Once the user presses the SubmitView button, the corresponding commands (statements)
for the view creation will be built on the fly and committed to the specified database. Two
specific cases are supported here:

1st Case: If the underlying database system supports the definition of views (e.g. Oracle
DBMS), an SQL command is formulated and executed, creating the export view. In
this case the corresponding SQL statement will be:

Create View Archives V1 as

Select Title, Description, Date, Language, Coverage

From ArchivedElement

Where (Date > ’03/01/2002’ and Format = ’NCDF’).

2nd Case: If the underlying database system does not support the built-in components for
the definition of views and roles (e.g. Matisse DBMS), as it is the case for most object-
oriented database systems, the database schema for the corresponding application must
be augmented with the data model of the role-based data access control. In this case
the following specifications are realized for the elements of the export view defined in
Figure 5.12:

108 Chapter 5. Information Management for Scientific Applications

• Select Specification : Select Title, Description, Date, Language, Coverage
• From Specification : From ArchivedElement
• Where Specification : Where (Date > ’03/01/2002’ and Format = ’NCDF’)

Other interfaces are also developed for the purpose of creating export schemas, including
user definition, and the roles assignment for users and groups. In terms of flexibility and
user-friendly facilities, the implementation of these interfaces is similar to the one for export
view definition.

5.5.2 Flexible Role-based Access Interface

The role-based access interface, primarily developed for data publishing to outside users,
relies on safe and reliable mechanisms for data export and publishing. The interface is
safe and reliable in the sense that it is based on the definition of roles, defined at different
access levels. A VL user must be authenticated by the system before any attempt to access
information. In addition, users are not aware about the complete structure of the underlying
database, each user only sees the part of the database for which he/she has gained the proper
access rights.

Figure 5.13: Safe/Reliable Data Export Interface

Figure 5.13 illustrates an example of the safe/reliable data export interface for an external
user of VL connected trough the Web. The interface tool, first checks and authenticates the
user connection for the selected data source, in this case the VL archive database (following
the example of figure 5.12), and only then, it provides the user with a set of information (in

5.6. Physical Database Performance Analysis 109

this case the class names including the ArchivedElement) based on his granted access rights
and visibility level. Therefore, the “user” access to the database objects is restricted via
the assigned roles, and users that do not gain permissions to the data source are prohibited
from any access to those objects.

Once the user is authenticated for accessing a selected data source, a connection will
be established to the underlying database, and the system will provide the user with some
interaction facilities to those database objects for which access permissions are granted.
From the safe/reliable data export interface, the user can perform the following tasks:

• Select a class/table name and browse or retrieve its instances. At this level, the user
can also specify an SQL query to be executed and evaluated against the underlying
data source.

• Choose an output format for the data presentation, currently the framework supports
the following formats: HTML, XML, OIF, and table format.

• Submit a query for execution on the database, and receive back the results according
to the specified format.

The Query Execution module checks the user input, creates the appropriate query, re-
stricted to his/her export view, to be sent to the database, and launches the Results Pre-
sentation module, which takes into consideration the output format specified by the user.

In addition to presenting the results on the screen, the framework also provides its users
with the following possibilities (Figure 5.13, frame (3)):

• Possibility to Upload the query results and save them locally for future use and exam-
ination. The results are stored according to the format chosen by the user.

• Possibility to Navigate among the database objects through the defined links and
relationships to other objects. Each object is augmented with a set of links referencing
all the objects to which it is related.

5.6 Physical Database Performance Analysis

Nowadays in all organizations large or small, databases constitute the most critical elements,
as the brain handling the organization’s information. They ease the storage and retrieval of
massive amount of information, and provide the proper facility for multi-user information
sharing and concurrent access control. DBMSs provide major facilities to the application
developers, thereby, they are also considered as an important factor on determining the
application performance in terms of data storage and information retrieval.

A main approach in this direction is to address the issue of scientific database system’s
performance, especially for storage/retrieval of large binary objects within the DBMS itself.
In order to achieve the most efficient physical implementation for VL, the main focus within
this section will then be to address some benchmarking tests at the physical level of the
Matisse DBMS, which is currently used within the VL project. Therefore, this section ad-
dresses the results of the physical database performance analysis regarding the manipulation
of large scientific data sets, when using the object-oriented Matisse database system as the
base for implementation.

In order to properly conduct these data access performance tests at the physical level of
Matisse DBMS, first we have designed and developed of a set of basic functions to access

110 Chapter 5. Information Management for Scientific Applications

large database objects within the Matisse database. Second we have performed some tests
to evaluate and analyze performance of the Matisse database when storing and retrieving
large binary objects.

5.6.1 Specific Functions to Access Binary Large Objects (Blobs)

A set of specific functions to read/write large objects (blobs) from/to Matisse database
are defined and implemented. These functions facilitate the access to large objects, which
are directly stored/retrieved into/from the Matisse database as a list of binary bytes. Four
functions are developed for the management of large binary objects [Ben 00b]. Each of these
specific functions is implemented based on a set of elementary functions, provided by the
Matisse C++ API interface.

• ConnectDatabase <Host Name> <Database Name> : Connects to a dis-
tributed database <Database Name> that runs on a remote host <Host Name>

• LoadBlob <Class Name> <Attribute Name> <File Name>: Loads a binary
large object <File Name> into the database as the value for the attribute mentioned
as <Attribute Name> defined within the class <Class Name>.

• ReadBlob <Class Name> <Attribute Name> <Entry Point> <Object ID>:
reads a binary object <Object ID> using the entry <Entry Point> from the attribute
<Attribute Name> defined within the class <Class Name>.

• DisconnectDatabase <Host Name> <Database Name>: Disconnects from the
database <Database Name> on host <Host Name>.

These functions hide the programming complexities from the user when accessing binary
objects, thus, provide easy and simple access for the user. These functions are also used for
the implementation of the benchmarking tests, described in the next section.

5.6.2 Benchmarking Tests For Matisse Database System

As a part of the design of most efficient physical implementation for the VL project, a set
of benchmarking tests are performed on the Matisse DBMS to evaluate the performance of
different implementation approaches for storing/retrieving very large binary objects in the
database. Large real data sets from the application case of VISE, focused on visualization
and simulation functionalities of the VL project (described in section 5.2), are used as input
for the benchmarking tests. These tests are performed for read and write accesses using the
functions described in section 5.6.1 and for two different implementation-configurations in
Matisse. Namely, first a Matisse database that uses a normal disk (regular file managed by
the system), and second using a raw disk partition (managed by the DBMS itself). For this
benchmarking of the Matisse database system, the following test case input was designed
and applied:

• 100 objects are used for both purposes of storage and retrieval accesses,

• The size of these objects range between 73 Kilobytes and 12 Megabytes,

• The total size of the 100 objects (loaded into the database) is around 570 Megabytes,

• The objects’ storage/retrieval starts with object number one (which is of the smallest
size: 73 KB) and gradually increases in size till object number 100 (which is of the
largest size: 12 MB),

5.6. Physical Database Performance Analysis 111

• The difference in size between every two loaded objects N and N +1 is approximately
70 Kilobytes, where N = 1 .. 99,

• The database software runs on the Arches machine at the University of Amsterdam,
which consists of dual Pentium II processors with 512 MB memory, 9 GB disk storage,
and supports several network communications (Fast-Ethernet, Myrinet, and Gigabit
Ethernet),

• To reach the best physical performance, the database configuration, which is chosen
based on the available hardware for VL and also considering the suggestions from the
Matisse DBMS developers, is as follows:

– Database silo size (total storage capacity): 2 Gigabytes
– Database Bucket size: 64 (64 * 512 = 32 KB)
– Database cache size: 4000 (4000 * 32 K = 128 Megabytes)

These tests are very important in the sense that they allow us to determine the best data
access performance that can be reached when storing large objects within the DBMS.

Figure 5.14 illustrates the Matisse database performance when storing/retrieving the 100
objects, of different sizes, one by one. The X-axis values represent the size of the individual
objects being stored/retrieved, each illustrated by its size expressed in Megabytes. The Y-
axis values represent the database access time for both storing (write) and retrieving (read)
of each object, expressed in seconds. More details concerning the input/output data used
for the benchmarking tests are given in [Ben 00b].

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12

Objects Size in Megabytes

A
cc

es
s

T
im

e
in

 S
ec

on
ds

Write Raw Partition Read Raw Partition
Write File System Read File System

Figure 5.14: Database performance when storing/retrieving large objects

For the first case, in which the database uses regular file system for the data storage,
the average data access time for the write operation reaches 664 KB per second and for the
read operation reaches 784 KB per second.

112 Chapter 5. Information Management for Scientific Applications

For the second case, in which the database uses the raw disk partition for the data
storage, the average data access time for the write operation reaches 3.35 MB per second
and the read operation reaches 4.92 MB per second.

5.6.3 Observations

From the benchmarking tests performed, according to the chosen configuration parameters
for the test case described in previous section, we conclude the following observations:

Observ 1: On the average, for the case of using regular file system and for objects that are
smaller than 3 megabytes, the performance of Matisse database system is almost the
same for both read and write operations. However, for larger objects, the difference
between read and write operations is rapidly increasing.

Observ 2: For the case of using the raw disk partition, both read and write operations
almost take the same amount of time for objects up to 6 megabytes. For larger
objects, the difference between the read and write operations has a minor increase.

Observ 3: On the average, the Matisse database system performance when storing/retrieving
large objects improves up to 6 times with the use of the raw disk partition.

Observ 4: The database access time is more regular when using raw disk partition than
in the case of using normal file system, which is probably influenced by other I/O
performed by the operating system.

5.6.4 Lessons Learned

To better support the complex requirements of scientific applications in VL, and to design
the most efficient physical implementation for the database, some data storage/retrieval
benchmarking tests are necessary to be performed. The test cases must be carefully designed
to help with the evaluation of the approaches for physical database design, while considering
the performance of the DBMS itself for managing large scientific multi media data sets.
Besides the tests performed above, additional tests may become necessary for instance to
consider the hardware configuration in terms of (1) using several raw disk partitions, (2)
increasing the database cache size, and (3) using powerful machines, mainly dedicated to
run the database server for large applications.

The knowledge gained from benchmarking plays an important role in defining the phys-
ical database design and specific data storage strategy for each application, based on the
data input/output requirements. For instance, considering the performance results achieved
above, a small to medium size application that does not require more than 5 MB per second
for its input/output, can follow an archiving strategy where the large data sets are stored
together with their meta-data in the same Matisse database. However, more complex appli-
cations that may require better performance or proper storage of larger data sets can benefit
from a different strategy, where the database only holds a link to the large objects, that can
in fact reside at the place where they are generated or heavily used.

5.7 Conclusion and Discussion

This chapter addressed concepts for building a robust application to efficiently manipulate
large and complex scientific data sets in the VL environment and introduced flexible inter-
faces for data access in the VL. The addressed concepts, however, are not only specific to

5.7. Conclusion and Discussion 113

the VL, rather, most concepts presented here also facilitate, for instance, the creation of
general digital libraries for scientific applications and can support the manipulation of their
large multimedia data sets.

In different sections of the chapter, we illustrated possible strategies for storing scien-
tific data, and outlined the major benefits gained when considering standards during the
modeling and implementation phases of advanced and complex applications. Such concepts
can be applied to different applications and serve for improving their development life cycle
from information classification strategies to modeling the constructs, and from the design of
information access mechanisms to the analysis of performance criteria.

The concepts presented in this chapter extend and complement the work presented in
previous chapters. The extensions addressed in this chapter focuses on the following:

• The combination of database standards and Web technologies, to facilitate the process
of developing information integration mechanisms among networked applications.

• The use of universal data access mechanisms to provide common interfaces for accessing
heterogeneous databases through a common set of code.

• Standard information modeling for scientific applications to provide a common under-
standing about the data and meta-data dealt with, in scientific applications.

• The considerations of scientific multimedia information, large data sets, and complex
inter-linked objects.

• Provision of mechanisms and tools for scientific data publishing, based on tailored and
restricted access on sharable data, while preserving systems’ autonomy; and hiding
private data from outside users.

5.7.1 Contribution to GFI2S

The concepts introduced in this chapter addressed a number of important issues that are
applied at every site to better enable it as a node within the cooperation network. The
data storage strategies and the performance issues assure the database efficiency at the
local sites. While, the definition of restricted schemas and the development of universal and
schema free tools to access them, allow sites to share part of their data. The contribution
of the approaches described in this chapter to the GFI2S integration approach presented in
Chapter 6 is two-fold:

• On one hand, since the GFI2S integration architecture preserves autonomy for indi-
vidual sites, those sites can benefit from the use of the important concepts developed
for VL information management, in order to efficiently build their applications inde-
pendently of other sites.

• On the other hand, the use of standards at individual sites as adopted for VL, espe-
cially for the information modeling and universal data access, helped the development
of information integration mechanisms for GFI2S, which was necessary to support
collaboration among heterogeneous and autonomous sites.

Chapter 6

GFI2S - Generic and Flexible
Information Integration System

6.1 Introduction

Nowadays, for information management in complex organizations, a large variety of different
database management systems (DBMSs) are used, which are at best chosen to meet the spe-
cific characteristics and requirements of every application environment. Existing application
environments differ in their main characteristics and features. On one hand, they differ in
their distributed/centralized architecture, their size, complexity, and the type of data they
handle. On the other hand, their requirements depend on the global functionalities that
they need to provide and on the required level of integration.

Following are brief descriptions of the main characteristics, which have a direct impact
on the level of complexity of applications in terms of information management. These
characteristics need to be considered when designing and developing information integration
mechanisms for advanced application domains:

☞ Type of Application : due to their wide diversity of interest, emerging applications
constitute a wide variety. Certain applications are specific to tasks that are internal
to organizations, while some others are more dedicated to web environment and e-
commerce. A a third type focuses on building secure collaborative environments among
a trusted community of users, and so on.

☞ Size and Complexity of Applications: existing organizations are of different com-
plexities and may consist of a wide range in sizes. For example, organizations may be
as small and simple as a local or centralized application where all modules can run
on a single unit, or as large and complex as a heterogeneous application with many
geographically distributed processing units.

☞ Type of Data and Data Integration : some applications are developed using sim-
ple data structures and may perform little information exchange with others. Other
applications however, handle inter-linked complex objects and require the integration
of large data from external sources.

☞ Level of Integration: the required global services among heterogeneous and au-
tonomous sites identifies the level of integration to be provided, while supporting the

115

116 Chapter 6. GFI2S - Generic and Flexible Information Integration System

heterogeneity of the underlying database components, and preserving their autonomy.

The scope and characteristics of application environments as described above, and their
required level of interaction and integration with other applications, play the major roles
in designing suitable database architectures and database management systems for them.
In particular, for every application environment, the underlying DBMS must be carefully
chosen to meet its specific requirements.

At the logical level, all existing DBMSs provide certain basic functionalities for applica-
tion modeling, data structures, and the information storage and retrieval. However, at the
physical level (the implementation level), DBMSs differ on the architecture that they rely
on, the constructs they offer, the data storage mechanisms they use, and the information
retrieval functions they provide. Therefore, existing DBMSs lack the possibility to be ef-
ficiently used for all types of applications. Some DBMSs better suit smaller applications,
while others are more dedicated to complex environments and focus on the management of,
for example, multimedia information and large data sets. Thus, any attempt in the direction
of forcing different applications to use the same database system for the management of
all their information services is unrealistic. Even within the same environment, in certain
complex applications, the use of more than one DBMS cannot be avoided.

From the application cases, described in Chapters 3, 4, and 5, it is clear that a main
criterion required by most advanced applications, is the provision of collaboration possibil-
ities and data sharing/exchange among distributed, heterogeneous, and autonomous orga-
nizations. We also learned from the application cases that providing interoperability and
integration among sites, via the deployment of database standards and emerging Internet
technologies, is one of the most challenging approaches in the area of integrating hetero-
geneous information from autonomous sites. The interoperation/integration process eases
the collaboration among existing systems, while preserving their autonomy and privacy in
manipulating their own data independently of other database systems.

Research in the area of integrated information management systems started in the early
1980’s. However, the integration focus since then has been stepwise, from supporting ho-
mogeneous centralized systems, to heterogeneous distributed systems, and finally towards
the federated solutions. A number of these solutions are described in details in Chapter 2,
where a comprehensive classification architecture for these approaches is also provided and
illustrated. Considering the subject addressed by this chapter, we briefly summarize the
main categories addressing the integration, as follow:

• Tightly coupled homogeneous systems denoting logically centralized, but physi-
cally distributed, databases systems [CP 84, SBD+83, AVF+92]. This approach lacks
the support for data representation heterogeneity and does not preserve the autonomy
of individual database systems participating in the collaboration network.

• Tightly coupled heterogeneous database systems where database schemas are
integrated in one centralized global schema on top of which, database views can be
defined [TBD+87]. This approach proves inefficient in terms of flexible information
sharing and in preserving full autonomy of the local database systems.

• Loosely Coupled federated architecture proposed in [HM 85, LA 86], involves the
integration of several database systems, stressing the autonomy and flexible sharing of
information in a loosely coupled architecture. Examples of loosely coupled federated
systems, providing partial autonomy to the involved databases in the network, are
MRSDM [Lit 85], OMNIBASE [REM+89], and Calida [JPS+88]. To this architec-
ture, Kim et al. [KCG+93] provides suitable techniques for resolving representational

6.1. Introduction 117

conflicts within the context of multidatabase schema integration. Another example
of federated information management approaches is proposed by the PEER federated
system [AWH 94, ATW+94]. PEER follows the pure federation supporting information
heterogeneity and preserving the full autonomy of nodes in the federation.

This chapter focuses on the design of a Generic and Flexible Information Integration
System (GFI2S). Flexibility in GFI2S resides in its ability to add/remove new system
to/from the federation with involvement of minimum effort. Flexibility of GFI2S is sup-
ported through the use of the specific two-component architecture, while, its Genericness is
achieved through the incorporation of database standards, emerging Internet technologies,
and middleware solutions.

The design of GFI2S is based on the investigation, evaluation, and validation of the
methodologies and systems discussed within Chapter 2; and motivated by the expertise
gained within the development of the various R&D projects addressed in Chapters 3, 4, and
5 of the dissertation. Thereby, the architecture of GFI2S is inspired on, and extends the
architectural design and development for these systems. A number of these aspects and
design considerations are described in previous chapters, hereafter, we briefly summarize
their main contribution to GFI2S as follow:

• The Waternet system contributes to the design of GFI2S at (1) the Node Federation
Layer by tackling the fundamental schema management challenges, and at (2) the
Local Adaptation Layer by serving the system openness through the adaptation and
extension of the data adapter components.

• The MegaStore system contributes to the design of GFI2S through (1) the deployment
of database standards and Internet Middleware supporting system reusability, (2) the
development of a parallel/distributed database server assuring system efficiency, and
(3) the development of user friendly interfaces assisting advanced/ordinary users in
accessing the underlying information sources.

• The VL information management framework contributes to the design of GFI2S by
addressing a number of important issues that are applied at every site to better enable
it as a node within the federation. On one hand the data storage strategies and the
performance issues assure the database efficiency at the local sites. On the other hand,
the definition of restricted schemas and the development of universal and schema free
tools to access them, allow sites to properly share part of their information.

6.1.1 Focus of GFI2S

The architectural components of Generic and Flexible Information Integration System
(GFI2S) supports the integration of different types of data from heterogeneous applica-
tions, in order to achieve broader information access capability, and minimize development
efforts. The architecture of GFI2S is composed of two main components: (1) Local Adap-
tation Layer (LAL) that facilitates the access to the underlying databases in the node;
and (2) Node Federation Layer (NFL) that provides links to the information and appli-
cations outside the node and supports the information sharing and interoperation. This
two-component architecture of GFI2S supports a wide variety of existing applications
with efficient means for their interconnection and interoperation, while preserving their
heterogeneity , distribution , and full autonomy :

118 Chapter 6. GFI2S - Generic and Flexible Information Integration System

• Heterogeneity refers to the fact that each database may apply its own distinct DBMS,
and data representation is heterogeneous in terms of structures and semantics.

• Distribution refers to the storage and processing of information from distributed
data sources, located on different host computers.

• Autonomy refers to the fact that each site within the federation community is an in-
dependent system. Typically, a local site is pre-existing to the creation of a cooperation
network and has its own administration policies, and users groups.

The distinctive features of the GFI2S integration approach resides in: (a) the spe-
cific combination of database standards and Internet middleware with the fundamental
research approaches, and (b) the way in which they are deployed and interlinked
within the two specific components of the GFI2S architecture. These two considerations
make the GFI2S approach distinct from all other existing federated/integrated approaches,
and introduce GFI2S as a generic solution providing a flexible architecture, and an open
facility for integration/interoperation among heterogeneous, distributed, and autonomous
sites. Following are clarifications related to genericness, flexibility, and openness of GFI2S:

1. The use of object-oriented standards and middleware solutions, in the development of
the GFI2S system, makes its architecture generic. Each site that wishes to join
the federation only needs the knowledge about its “underlying database system” and
about the “common format” adopted at the federation layer. The local users at each
site gain proper expertise about the underlying local database characterization and
specifications. At the same time, the common format adopted at the federation layer
is widely understood by these users.

2. The use of a two-component architecture within GFI2S makes the system flexible .
This flexibility is supported from two sides, on one hand, sites can easily join or quit
the federation, on the other hand, the schema integration strategy followed at the
node federation layer allows for a customized integration, which can be tailored to the
need of each site. Within each site, the Local Adaptation Layer (LAL) facilitates the
access to the underlying databases in the node, in their native format, while the Node
Federation Layer (NFL) provides links to the information and applications outside the
nodes, to support the information sharing and interoperation.

3. The bounding of database standard mechanisms (e.g. ODMG standard) with emerging
advanced tools in the domain of information management (e.g. Java, JDBC, and XML)
makes GFI2S an open facility for sites integration. The deployment of advanced
and standard tools facilitates the information integration and the interoperation among
multi-platform and multi-language applications.

The main concepts related to the architecture of GFI2S system and the deployment of
standard mechanisms and advanced tools are further described within the remaining sec-
tions of this chapter. Section 6.2 addresses the information integration approach of GFI2S,
Generic and Flexible Integration Information System, and outlines its architecture. The ar-
chitecture of GFI2S constitutes two components of Local Adaptation Layer (LAL) and Node
Federation Layer (NFL). Further details of LAL and NFL layers of GFI2S are presented in
sections 6.2.1 and 6.2.2. Within these two sections, detailed descriptions are also provided
regarding the various components and concepts constituting both the local adaptation layer
and the node federation layer. Among other components, section 6.2.2 also describes fed-
erated schema management, federated resources specification, federated query processing,

6.2. GFI2S Information Integration Approach 119

and the various schema definition and schema derivation primitives. Section 6.2.3 discusses
the deployment of database standards and middleware solutions within GFI2S, to facilitate
the collaboration among a large number of organizations. Section 6.2.4 describes an exam-
ple operational case that shows the quality of GFI2S approach and illustrates the main
benefits gained when deploying its architecture. Finally, section 6.3 concludes the chapter
and emphasizes the major achievements of GFI2S in terms of information integration and
systems interoperation.

6.2 GFI2S Information Integration Approach

This chapter addresses the design of a flexible approach for information exchange and inter-
operation among heterogeneous applications. The proposed approach follows the node-to-
node federation described in section 2.2.2.2. Additionally, this approach extends the existing
solutions via the deployment of standard solutions, middleware, and the emerging Internet
and database technologies. Therefore, the information integration in GFI2S is addressed
from two perspectives:

1. There will be a design and partial development of a generic an extensible integrated
information management approach referred to as Generic and Flexible Information
Integration System (GFI2S), and

2. It will involve the definition and extension of database standards and middleawre
solutions serving the interoperability requirements, and providing support for openness
and flexibility to the GFI2S approach.

For federated schema management, the architecture of GFI2S has its roots in the PEER
federated/distributed database system [TA 93, ATW+94], which was previously developed
within the CO-IM group of the University of Amsterdam. Moreover, the designed solution
takes advantages from other related research and approaches. Among the applied features we
enumerate the use of database standards [BFN 94, PWD+99], object-oriented technologies
[CBB+00], mediated systems [DD 99], wrappers [THH 99], Grid distributed technologies
[ABB+01, BHG+01], and semantics resolution [KCG+93, SP 94, HM 99]. In the GFI2S
system, the nodes store and manage their data independently, while in the case of common
interest they can work together to form a cooperation network at various integration levels.
This nesting of nodes at different integration levels allows for a variety of configurations,
where, for instance, certain kinds of cooperation are formed to enhance the performance of
data sharing, while others are formed to enhance the complex data sharing in a distributed
or federated manner.

Figure 6.1 shows the high-level architecture of the GFI2S integration approach among
several sites. The two main components participating in the design and development of
the integration layer at each site within the federation community are the Local Adaptation
Layer (called LAL) and the Node Federation Layer (called NFL). The local adaptation layer
defines the set of concepts and mechanisms that: (1) facilitate the access to the underlying
local data sources in their native format, and (2) control their access rights. The node
federation layer acts as a mediated common interface that sits between the local system and
other external data sources participating in the federation.

Previous work in the area of federated database systems has involved a considerable
effort in integrating new systems to the federation community, where each federated system
is considered to interface with all other native systems in the cooperation. Our approach

120 Chapter 6. GFI2S - Generic and Flexible Information Integration System

ORDBMS

FRS

FQP NFL

Schemas

LRS

LQP

Proxy

LAL

OODBMS
Other Data

Sources

NFL: Node federation Layer
FRS: Federated Resources Specification
FQP: Federated Query ProcessorOther Data

Sources

LAL

NFL

RDBMS

LAL

NFL

LAL

NFL

LAL

LAL: Local Adaptation Layer
LRS: Local Resources Specification
LQP: Local Query Processor

File System

 Network

NFL

Figure 6.1: The GF2IS Architecture following the Node-to-Node Federation

considers the use of standards at the federated layer and it is preferred that each site that
wishes to join the federation defines and specifies the mapping to and from the federated
layer to its internal data source. Thereby, all data source components in the federation
only communicate using the standard languages and common data format, adopted at the
federated layer, which are widely understood by a large community of users in the field.

Figure 6.2 illustrates the communication mechanism among two sites using GFI2S ar-
chitecture, where the LAL overcomes the specificities of the underlying data source in terms
of query languages and data format, and the NFL overcomes the data models specifities
among several nodes within the federation community. More precisely:

• The LAL handles the communication between the standard data and query format and
the specific data model and query language deployed at the underlying data source.
It consists of a set of specifications and tools supporting the communication to the
underlying data source using a common data model and a common query language.

• The NFL at each site: (1) defines the part of the information to be imported/exported
from/to other sites within the federation community, (2) defines the mapping between
import, export, and integrated schemas, and (3) specifies the circumstances under
which external users can access exported information.

6.2. GFI2S Information Integration Approach 121

Data Source

LAL

NFL

Standard
Queries

Specific
Queries

Specific
data format

Standard
data format

Data Source

LAL

NFL

- Standard data Model (schema)
- Standard Query format
- Standard result exchange format

Node A Node B

 Network

Standard
Queries

Specific
Queries

Specific
data format

Standard
data format

Figure 6.2: Communication Model among GF2IS components

The GFI2S architecture supports several features, which ease the integration process
among autonomous and heterogeneous sites. These features are mostly achieved through
specific design considerations:

1. The global federation is build based on the federated resources1 defined at the nodes
federation layers (NFLs). The nodes federation layers are based on the use of standards
for data modeling, for information sharing, and for query languages (e.g. ODL, XML,
OQL, and SQL). These standard mechanisms are widely adopted in most applications,
thus, facilitating the interoperation/integration process.

2. The Heterogeneity at every node is supported at the two levels of:

• Database management systems, where different data modeling approaches are
considered, ranging from relational to object-oriented and object-relational, and
from file systems to legacy database systems.

• Data representation, in which the same data may be defined differently (different
schema definitions), in terms of its semantics and structures.

3. The proposed architecture makes it possible to add a new application to the federa-
tion, just as easy as to take one away. To join the federation, each application only
needs knowledge about its underlying database system and about the common format
adopted at the federated layer.

4. The user assistance in remote data sources integration and data access, is achieved via
flexible interactions with the common data model at the federated layer, and through
common query languages. The Universal Database Access and the Safe/reliable Data
Export interfaces, described in Chapter 5, illustrate two examples of tools assisting
GFI2S users in integrating heterogeneous information sources and defining informa-
tion visibility levels on them.

5. The use of standard mechanisms and middleware solutions for applications modeling,
data structuring, and information retrieval ease the interoperation/collaboration pro-
cess among a wide variety of preexisting applications. The database schema evolution
and the multi-media data handling are supported via the deployment of object-oriented

1The term resources in this context refers to information sources.

122 Chapter 6. GFI2S - Generic and Flexible Information Integration System

standards, while the emerging Internet technologies and middleware solutions allow
universal access to the data, ease the information exchange mechanisms, and facilitate
multi-platform applications development.

6. The access to the local data sources is supported via the specification of mappings
between the local data sources and the common data model at the NFL, where the
LAL, at each node, supports the controlled transfer of data to the NFL, while pre-
serving full local autonomy of that node. For the development of mappings of process
also considers the use of object-oriented approaches that combine both elements of
object-oriented research and heterogeneous distributed DBMS research (e.g. apply-
ing object-oriented concepts to heterogeneous and distributed database environment
is considered).

7. To enforce the database integration process and facilitate the federation of a wide
variety of heterogeneous information originating from distributed sources, the GFI2S
approach also defines the concepts of Semantics description and Dictionary of Terms.
These two concepts, eventually provided by each participating database, help the con-
flict resolution about the meaning and similarity of objects in terms of their naming
and structural representation. The importance of these components resides in provid-
ing a clear definition for all the objects exported by a database system, and facilitates
their integration by other systems.

The remaining sections describe in details the design of GFI2S and outline the features
and considerations enumerated above, which are covered by the two components of GFI2S,
namely, the Local Adaptation Layer and the Node Federation Layer.

6.2.1 Local Adaptation Layer (LAL)

In order to make the information sharing among heterogeneous and autonomous sites a
reality, local sites must develop a set of mechanisms to facilitate access to their local
data, to define the concept models, and to specify the circumstances under which exter-
nal users/applications can gain access to a part of their information.

A good strategy for information integration must clearly distinguish between the tasks
to be performed locally (specific individual tasks) and the common tasks that involve the
contribution of several networked applications (common tasks of the federation). The design
strategy we have followed considers that users at the federated layer only operate on common
data models using standard mapping tools and querying languages, without caring about the
specific operations for query translation and results transformation, which are left to each
local site. Thus, it is preferable to keep the local mapping rules and derivation primitives,
related to the query and to the result translations, local to each layer. For security and
efficiency reasons, these specifications can be better supported as built-in components within
the local adaptation layer. On one hand, performing these mapping locally at each site
prohibits external users from knowing or needing to know the underlying data structures of
the local application. On the other hand, the local execution of the queries and the transfer
of the resulting data in a condensed format improve the interaction process and reduce the
communication time between interoperable database systems.

The main goal of the Local Adaptation Layer, created at each local node, is two-fold:
(1) to translate external queries into queries for the local querying language, and (2) to
transform the local results of the queries into a format that is readily understood by other
applications within the integrated system. Thus, the local adaptation layer at each node

6.2. GFI2S Information Integration Approach 123

provides a direct link between the local data source and the integrated system, forms the
local database gateway, and implements the interfaces to the federated layer.

Figure 6.3 shows the main components of the local adaptation layer. Mainly: (1) the
Local Interoperation Agent that forms the main gateway to outside for the local node; (2)
the local resources specification that defines the access rights, the query mapping rules, and
the results transformation mechanisms; and (3) the local query processor that interfaces to
the local data source for query translation and execution. The dashed arrows from the local
resources specification to the Local Interoperation Agent and to the local query processor,
means that the operation processes of these latter components in terms of data access rights
and query translation are performed and controlled based on the local resources specification.
The next sub-sections further describe in more details the components of LAL.

Local Data
Source

LIANFL

LAL

Node A

Local Resources Specification
♦ Accesses rights
♦ Query mappings
♦ Results transformation

Local Query Processor

Query
Translation

Result
Transformation

LIA: Local Interoperation Agent

Figure 6.3: Components of the Local Adaptation Layer

6.2.1.1 Local Interoperation Agent (LIA)

The Local Interoperation Agent component acts as the main gateway to outside for the local
node. Its main functionality include: checking and controlling the access rights to data,
validating the query commands against the local resources specification, and coordinating
the local query execution and result transformation. To properly accomplish the main tasks
assigned to it, the Local Interoperation Agent operates according to the local resources
specification defined at the Local Adaptation Layer of the corresponding node.

6.2.1.2 Local Resources Specification (LRS)

The Local Resources Specifications (LRS) help the Local Interoperation Agent and the local
query processor with performing their tasks and controlling the access to the sharable data
at the local node. In this repository, the local resources are specified in terms of the following
features:

• Access rights and user visibility levels, which define the set of users that can
access the data, and specifies the part of information to be shared with them.

124 Chapter 6. GFI2S - Generic and Flexible Information Integration System

• Query mappings, which define the set of rules for query mapping that help the local
query processor (LQP) in translating the arriving queries from the common format
into the local format used at each local database system.

• Results transformation , which define the set of rules for data translation that help
the local query processor (LQP) in transforming the results of a local query into the
common format. The common format is based on the use of standards, which are
widely understood by the networked applications.

More details describing the resources specification and outlining the operational relation-
ship between local and federated resources specification are given in section 6.2.2.2. The
latter section outlines the schema definitions, mapping derivations, access rights definition,
and semantics description related to the sharable information among distributed sites.

6.2.1.3 Local Query Processor

The Local Query Processor is a software component that offers a uniform querying interface,
to the node federation layer. This querying facility applies to the schema defined on the
underlying local data source. The role of the local query processor is to pose queries to
the local data source and extract an answer resulting from that data source. The extracted
result must be reorganized into the common format that can be understood and manipulated
at the federated layer.

The local query processor, at each site’s local adaptation layer, is usually created with
two distinct parts, which consist of the query translation and the result transformation. The
query translation component transforms a query in the common format into a query in the
local querying language in order to be executed locally. The result transformation process
transforms the local data resulting from the local query execution into a format that is
readily understood at the integration layer.

Local Query Translation & Execution: At the local adaptation layer, before executing
the submitted query, first the query must be translated from the common format into
the local format of the underlying data source, and second the transformed query will
be executed against the local data source. We assume that the federated query proces-
sor, as will be presented in details in section 6.2.2.4, only performs the decomposition
of the federated query into a set of sub-queries that are still in the common format.
The task of translating the sub-queries from the common format to each local format
of the database systems participating in the federation is left to the local adaptation
layer of each node. If we consider the integration approach introduced in Figure 6.1,
the node making the integration does not need to know the specifications of local query
languages at participating database, neither it needs to knows about the local DBMSs
used by these databases. So it is easier and safer to process the relevant sub-queries
translation at each local node than having the database integrator transforming all
the queries from the common format to the various local formats.

Local Result Transformation: The local result transformation process translates the re-
sult of a sub-query into the common format defined at the federated layer. Similarly
to the query translation process, since the integration layer follows a common model
for data representation, the results of the local sub-queries are locally transformed at
each node and sent back to the user/application that has requested it. The Result
Assembler at the federated layer, as will be presented in details in section 6.2.2.4, will

6.2. GFI2S Information Integration Approach 125

merge this data and organize it to fit the federated schema specified by the requesting
user/application.

Below, we summarize the steps involved within the execution process of a given query
at the Local Adaptation Layer (LAL), which include:

1. A query is submitted to the local application through its LAL. The query is expressed
using standard languages (e.g. OQL).

2. The Local Query Processor (LQP) translates the submitted query in order to be con-
forming to the local native schema definition and local query language. The query is
then sent to the local source where the real data is stored.

3. Through the result assembler of LQP, the returned results (expressed according to the
local format) are transformed and reorganized to fit the export schema defined at the
node federation layer.

4. The global results, expressed using the standard format (e.g. XML, CDM), are re-
turned to the user.

6.2.2 Node Federation Layer (NFL)

In recent years, database research is increasingly focused on the area of systems interop-
eration and information integration, where the research is approached differently through
different methodologies such as the multidatabase systems (MDBS) [LMR 90], federated
database systems [SL 90], or mediated systems [FLM 98]. There are however, a large num-
ber of challenges still need to be addressed and solutions to be found in this area. Therefore,
further and deeper investigations are required in this field.

The Node Federation Layer of the integrated system, addressed in this section, describes
the integration mechanism of GFI2S. The global architecture of the node federation layer,
presented in Figure 6.4, is composed of (1) a Federated Schema Management defined using
the Object Modeling Language (ODL), (2) a set of Federated Resources Specification for
the information sharing, and (3) a Federated Query processor based on standard query
languages. The modeling language within the GFI2S system allows the definitions of the
set of entities, their attribute names, and relationships that are used to build the schema
components. While, the common query language is the mean to formulate queries against
those schemas.

 Federated Schema Management
- Local Schema
- Export schemas
- Integrated schema

NFL

Federated Query Processing

Federated Resource Specifications
- Accesses Specification
- Schemas definition/Derivation
- Derivation Primitives
- Semantics description

Query
Decomposition

Result
Assembly

LAL

LAL

NFL

Data Source

Node A
Node B

 Network

Data Source

Figure 6.4: Node Federated Layer Representation

126 Chapter 6. GFI2S - Generic and Flexible Information Integration System

In addition to supporting heterogeneity of the database components and preserving their
autonomy, the NFL layer at each node allows every site within the federation to:

• Define as many export schemas as required; each export schema defines a part of the
sharable information for certain external users, and is tailored to the specific need of
those users.

• Only import the required parts of information from the schemas exported by other
sites; related information is imported in coordination with the node federation layer
of the exporting site.

• Design and build its own integrated schema; where classes and their attributes in the
integrated schema represent the global overview of all the data that can be accessed
by the site. The integrated schema represents the local information merged with all
imported information.

The node federation layer is responsible for maintaining the local, export, and integrated
schemas consistency, decomposing global queries into sub-queries executable by the local
database at different sites, coordinating the execution of the sub-queries, and reorganizing
the returned sub-query results to fit the global view of the integrated schema. These tasks
are accomplished at the node federation layer based on the set of federated resources, which
define the necessary specifications related to the sharable information, it’s derivation opera-
tions, and the circumstances under which external user can gain access to that information.

• From the usage point of view , the NFL at each node provides the means to
create a seamless federated database, hiding details such as the database location, data
representation, and heterogeneity from the users and application programs. Moreover,
the integrated schema within the node federation layer is customized to the need of
the users and to the requirements of their applications.

• From the implementation point of view , the aim of the NFL is to remove the need
for static global schema integration and allow each application to have more control
over the sharable information; control, is therefore decentralized. The node federation
layer brings an open component-based architecture to build an integrated system with
advanced database integration features, which makes it a favorable solution located in
between the two extremes of no integration and total integration.

The Object Database Standard (ODMG 3.0) [CBB+00] is chosen for specifying the
modeling constructs and the querying language at the federation layer. In this direction, the
object definition language (ODL) is used for describing the data structure and constraints,
while the Object Query Language (OQL) is used for operating and retrieving the sharable
information.

Besides following the standards in defining the database schema components, the ODMG
model provides the following advantages:

• It is simple enough so that it can be readily understood and implemented.

• It is semantically expressive to capture the intended meaning of conceptual schemas
that may reflect several kind of heterogeneity.

• It contains the basic features common to most semantic, hierarchical, relational, and
object oriented models. It supports modeling primitives, type membership, object
properties, and object behavior.

6.2. GFI2S Information Integration Approach 127

• It includes the ability to encapsulate the functionality of shared objects, its extensible
nature, and object uniformity.

• It is an open standard for new extensions regarding languages programming, Java
binding, and interfacing with other emerging standards and technologies.

The use of a common data model, that is object-oriented, does not rule out the par-
ticipation of other relational, hierarchical, or file system based models. Rather, it assures
their full integration via the support of their semantics heterogeneity through the expressive
object data model adopted at the federated layer.

The remaining of this section will address in more details different components that con-
stitute the federated layer at each node participating in the federation community. Namely,
the following sub-sections describe the steps required for defining:

1. The Federated Schema Management , which provides the necessary mechanisms
for the definition and derivation of the local, export, and integrated schemas (described
in section 6.2.2.1),

2. The Federated Resources Specification (FRS), which defines the set of concepts
related to the sharable information, to their derivation, and to their access right policies
(described in section 6.2.2.2),

3. The Federated Derivation Primitives, which specifies the mapping rules for
schemas derivation and query decomposition (described in section 6.2.2.3), and

4. The Federated Query Processor (FQP), which processes queries that may require
extracting and merging data from multiple sources (described in section 6.2.2.4).

6.2.2.1 Federated Schema Management

The federated schema management is based on the integration of information from several
remote and local data sources. As depicted in Figure 6.5, Every site participating in the
integrated system is represented at its node federation layer by several schemas:

• The Local Schema , which models the data stored locally. This schema represents
the part of data owned by the node.

• The Export Schemas, which model the part of information that this node wishes to
make accessible to other nodes/users.

• The Imported Information , which represents the part of information that this node
whishes to import from other exported schemas participating in the federation.

• The Integrated Schema , which merges local and imported information into a coher-
ent view that, satisfies the node’s requirements in term of information management.

The schemas representation adopted for the node federation layer, illustrated in Figure
6.5, guarantees the following features:

• Autonomy is preserved : each node has full control on its local data, decides on the
part of data to be shared with external nodes, and only imports the part of information
needed from the various schemas exported by other nodes.

128 Chapter 6. GFI2S - Generic and Flexible Information Integration System

• As many export schemas as needed : each node individually decides on the part
of data that will be shared with the external nodes based on other node’s privileges
and rights.

• Each node decides on the layout and the format of the data that they want to
export and make available to the outside world.

• The information managed by the integrated system is maintained and stored at
several local and remote heterogeneous data sources where it is generated or
it belongs.

LOCAL
SCHEMA

EXPORT
SCHEMAN

EXPORT
SCHEMA1

INTEGRATED
SCHEMA

Imported Information

Exported Information

Imported Information

Exported Information

Federated Schema Management - Site B

Derivation Process

Transformation Process

INTEGRATED
SCHEMA

LOCAL
SCHEMA

EXPORT
SCHEMAN

EXPORT
SCHEMA1

Federated Schema Management - Site A

Figure 6.5: Schemas representation adopted at the node federation layer

The following sections describe in more details the components of the Federated Schema
Management that support the definition of local, export, and integrated schemas; while their
corresponding resources specification, semantics description, and derivation primitives are
further described in sections 6.2.2.2 and 6.2.2.3.

Local Schema

The local uniform schema at the NFL reflects the data structure of the underlying local data
source, and it is defined using a common-format adopted at the level of the federation
layer to represent all the local schemas at the sites. Under normal situations, this schema
can be semi-automatically constructed from the native schema of the underlying DBMS,
with the help of a local user.

The local uniform schema supports the derivation of a set of export schemas (serving
the requirements of other applications) for information sharing. The local uniform schema
defines a consistent data model facilitating the manipulation of the shared information.

For the derivation of export schemas, another strategy that can be adopted is to define
them directly on the local underlying data source, without passing through the definition
of the “local uniform schema”. However, the usage of the local uniform schema as an inter-
mediate step, eases the definition and further expansion of the export schemas at different
phases of the integration process, as well as making the federation more flexible when new
information sharing policies are required.

6.2. GFI2S Information Integration Approach 129

The native schemas are then transformed using the standard data modeling constructs
adopted at the federation layer. Thus, the problems related to the data modeling hetero-
geneity among applications are solved, while representational heterogeneities are also treated
at the node federation layer, for which related concepts to schemas derivation and semantics
description are presented in sections 6.2.2.2.

Export Schema

The export schema defines a part of local information that a node desires to share with
the outside world. It also specifies the “mapping rules” for translating the data from the
local data source to the various export schemas. These mappings are necessary when a node
decides to export data in a different format than the local representation. Such a variation
is necessary for security reasons and due to some required layout when data needs to be
exported. A node for instance may create a single export schema for each user/application
or it may define a common export schema that can be exported to different nodes.

A set of resources are defined within each export schema, these resources specify the
derivation mappings from the local schema to the export schemas, define their access rights,
and provide the corresponding semantics descriptions, which help during the integration
process. These resources are further described in section 6.2.2.2.

Integrated Schema

Within each node’s federation layer, the Integrated Schema (INT) represents a global and
coherent overview of all accessible local and remote information. Its definition is based
on both local and imported information; that are merged in a way that makes the physi-
cal/logical distribution of information transparent to the user. The integrated schema can
be interpreted as one user’s global classification of objects that are organized differently by
the schemas in other data sources.

At the NFL of every node, local and remote information from different sources are
modeled into one data model, representing the integrated schema2. The constitution of
the integrated schema of a node is based on the need of the application and on the part
of information that this application is authorized to access and retrieve from other sites.
Therefore, the integrated schema represents the structure of the local and imported sharable
information. The use of a common data modeling language in defining the integrated schema
plays a vital role in resolving some aspects of the data model heterogeneity and eases both
the schema integration task and the mapping specifications.

The integrated schema for each system incorporates sub-schemas of the local data
sources. The Local Adaptation Layer (LAL), developed at each local data source, provides
the link that transforms the local database instances into instances of the integrated schema
for the node. Consequently, queries on the integrated schema can access the data that
resides in remote data sources of the network.

If the local schema uses a different data modeling constructs and a different query lan-
guage than the languages used within the federation layer, the local schema is seen as an
export schema for which, again the mapping specification and the development of the Local
Adaptation Layer become necessary. Thus, the import of information from the local schema
to the integrated schema will follow the same process as if importing it from a remote node.

2The schema integration component also considers both schema and database browsing, schema modifica-
tion and enrichment, and the interactive, incremental construction of integrated schemas for use by different
agents within the cooperation community.

130 Chapter 6. GFI2S - Generic and Flexible Information Integration System

The diagram in Figure 6.6 provides an example representing the schema integration
and systems interoperation within a collaborative environment among three departments
of Manufacturing, Sales, and Customer management. Within this environment, users com-
mands are by default, formulated and evaluated against the integrated schema. However,
it is always possible, for instance, for database administrator users to specify and submit
queries against a local, or export schema as long as they hold proper access rights.

EXP
Sales

1

INT
Sales

EXP
Sales

2

LOC
Product

EXP
Product

1

INT
Product

EXP
Product

2

EXP
CustomerA

1

INT
 Customer

LOC
Sales

LOC
Customer

Sales Department Manufacturing Department

Customer Department

Figure 6.6: Integrated Scenario for Systems Interoperation

The exchange of information between integrated systems within a federation community
is done through messages, where a message content is of two types query or data. Queries
are always sent from the integrated database system to the local and remote information
sources, while data is passed from the remote nodes to the integrated system as an answer
to its query. The content of a message, query or data, is expressed using respectively the
common query language (e.g. SQL and OQL) and the common data format for information
exchange (e.g. XML and OIF).

Within the integrated schema, a different data representation can be used. Similarly to
the case of data export in which an application decides on the layout for representing the
information to be shared with the outside world, a node at the integrated system can also
decide on the way to reorganize or merge the imported data with the local information.
Therefore, there is also a need to specify a set of resources that serve the federation process.
These resources, referred to as Federated Resources Specification (FRS), define the necessary
concepts for deriving the integrated schema and specifying the access rights to it.

6.2.2.2 Federated Resources Specification

In order to facilitate and control the access to their data, each node specifies a set of resources,
serving the federation process. These resources define the set of schemas and concepts related
to the description of the sharable information and also specify the circumstances under
which a node can join and register within the federation community. The main distinction
between the federated resources specification and the local resources specification (presented
in section 6.2.1.2) is that: the local resources specifications define the mapping rules and
the access rights to the local underlying data source, while the federated resources specify
the concepts related to the integration through the Node Federation Layer.

6.2. GFI2S Information Integration Approach 131

Within each node participating in the collaboration community, The federated resources
include definitions and specifications of the following five components:

1. Export schemas definition and derivation , respectively using the object defi-
nition language and the schema derivation language. An export schema definition is
identified by an ‘.odl’ extension (<export schema>.odl), while its derivation is identified
by a ‘.drv’ extension (<export schema>.drv).

2. Export schemas registration , in order to enable other sites to access and share its
data, each site must register the set of export schemas together with their access rights
specifications.

3. Integrated schema definition and derivation , similarly to the export schema
definition and derivation, the integrated schema is defined by two components, its def-
inition and its derivation (e.g. <integrated schema>.odl and <integrated schema>.drv).

4. Access rights definition for export and integrated schema components, which
are defined by the extension ‘.acs’, namely, <export schema>.acs and <integrated
schema>.acs.

5. Semantics description for export and integrated schemas, which consist of a
dictionary of terms and a dictionary of semantics, respectively expressed by <export
schema>.dic and <integrated schema>.dic.

Export Schemas Definition and derivation

Export schema definitions constitute subsets of the local schema definition. To define the
export schema, we preferably use the ODL object definition language. Figure 6.7 shows a
simplified diagram of a basic example for the export schema definition. In this example, a
new class Person in export schema EXP2 is derived from the class Employee in local schema
Loc. The structure and the attribute names in EXP2 are defined differently than in the
local schema Loc.

Employee@Loc

FirstName: String
LastName: String
Street: String
City: String
BirthDate: Date
Weight: Float

Person@Exp2

Name: String
Initial: Char
Address: String
Age: Short
Weight: Short

EXP Definition

Figure 6.7: Export Schema (Exp2) Definition and Derivation - Example

Figure 6.8 shows example derivation mappings for the class Person within the export
schema Exp2, derived from the local schema Loc. The derivation process is based on a set of
rules, which define the relationship between the class and attributes in the derived schema
(Exp2) and those in the base schema (Loc). The example below shows the use of three types
of derivation: rename, user-defined functions, and type casting.

• The class Employee and its attribute LastName are renamed in Exp2 respectively as
Person and Name.

• Attributes Initial, Address, and Age are derived using user-defined functions (respec-
tively GetInitial, Concatenate, and DateToAge). The concept of user-defined function

132 Chapter 6. GFI2S - Generic and Flexible Information Integration System

(that will be later addressed in section 6.2.2.3) is simple and powerful; it allows a user
to define his/her specific derivation‘s functions and algorithms.

• The attribute Weight is derived through type casting by converting the float value of
Weight in the base schema into a value of type short in the derived schema.

// Derivation specification of class Person in export schema Exp2
Person@Exp2 = Employee@Loc

Person.Name@Exp2 = Person.LastName@Loc
Person.Initial@Exp2 = GetInitial(Employee.FirstName@Loc)
Person.Address@Exp2 = Concatenate(Employee.Street@Loc, Employee.City@Loc)
Person.Age@Exp2 = DateToAge(Employee.BirthDate@Loc)
Person.Weight@Exp2 = (Short) (Employee.Weight@Loc)

Figure 6.8: Export Schema (Exp2) Derivation - an example

The example described above shows the flexibility provided by our approach for users
to define the derivation mapping from the base schemas. More details about the different
derivation mapping concepts and their possible implementation strategies will be provided
in section 6.2.2.3.

Export Schemas Registration

Database administrators at each local site must identify and register the set of export
schemas that can be accessed by other sites and external users. The registration process of
an export schema identifies its name and its location, along with other information needed
for user access.

The following BNF-like notation defines the syntax for export schema registration:

Registration ::= <Export Schema> [<description>] <host> <port> <mode>
Export Schema ::= identifier
port ::= number
Mode ::= R | W | R/W

The example below shows the registration process defined for two exports schemas Dublin
Core (DC) and Traffic System (TS):

DC Dublin Core www.science.uva.nl 8800 R/W
TS Traffic System 146.50.1.188 8900 R

The export schema registration allows the database integrators at other sites to identify
the set of export schemas that can participate in the definition of their integrated schemas.

Integrated Schema definition and Derivation

The integrated schema defines the complete set of information that a site can access and
retrieve. Therefore, this schema is derived from the local schema and from various schemas
imported from other nodes within the federation network. Figure 6.9 for instance, shows
a simple example of the integrated schema (INT) definition. In this example, a new class
Organization in integrated schema INT is derived from the existing classes Department in
schema Exp7 and Faculty in schema Exp3. This example involves the definition of new class
Organization, which contains information from two other classes Department and Faculty
that belong to different schemas Exp7 and Exp3.

6.2. GFI2S Information Integration Approach 133

Department@EXP7

DeptName: String
Employees: Integer
Field: String

Faculty@EXP3

Faculty: String
Staff: Integer
Researchers: Integer
Area: String

INT Definition

Organization@INT

Name: String
NumOfEmployees: Integer
Interest: String

Figure 6.9: Integrated Schema Definition and Derivation - Example

Figure 6.10 shows the derivation mappings of the integrated schema (INT), which is
based on a set of rules defining the relationship between the classes and attributes in the
derived schema (INT) and those in the base schemas (Exp7 and Exp3). This example
primarily shows the use of the Union mapping and a user-defined function (Sum); both
operations imply the combination of data originating from different schemas. The derivation
mapping is reached using an extended language for schema derivation that supports the
derivation operations (e.g. rename, union, subtract, and user-defined functions). More
information about different derivation mapping languages and primitives will be provided
in section 6.2.2.3.

//--- Derivation Specification of class Organization in integrated schema INT
Organization@INT = Union (Derive(Department@Exp7,

Name=DeptName,
NumOfEmployees=Employees,
Interest=Field),

Derive(Faculty@Exp3,
Name=Faculty,
NumOfEmployees=Sum*(Staff, Researchers),
Interest=Area))

* int Function Sum (int n, int m) return (n + m);

Figure 6.10: Integrated Schema Derivation – an example

Access Rights Specification for Users and Applications

This process limits the user accesses to the export/integrated schema components and iden-
tifies the set of allowable operations submitted on the sharable information. The access
to data will be limited to the set of authorized users/applications. This process acts as a
semantic integrity checker and access controller sitting between export/integrated schemas
and the components accessing them. The access specifications are defined for each export
and integrated schema. The following BNF-like notation is adopted for their specifications:

Access ::= <user> <password> | <user> <host> <port> <mode>
User ::= identifier
port ::= number
Mode ::= R | W | R/W

134 Chapter 6. GFI2S - Generic and Flexible Information Integration System

The example below shows the access rights for three different users, defined for a given
export or integrated schema:

John ********* 8800 R/W
Toto www.science.uva.nl 8800 R
Toto ********* 8800 W

Semantics Description

Structural characteristics and assigned names within the database schema do not sufficiently
describe their real-world meanings among a number of interoperable systems. In order to
support sharing of information among a collection of heterogeneous and autonomous sites,
we must overcome the heterogeneity3 of type definitions among these databases. Thus, it is
necessary to have an explicit dictionary that clearly defines entities of the database model
using a natural language to describe the meaning of names used for types and their at-
tributes. Availability of such a dictionary facilitates the integration of new export schemas
from other sites, without the need for on-line support from external users, submitting those
schemas. The semantics description also helps in developing Syntax Match Assistance tools,
which facilitates the automatic/semi-automatic resolution of semantic and representational
differences that occur among local and imported related data objects in different systems.
Hammer and McLeod [HM 99] distinguish between two aspects in resolving those represen-
tational differences: (1) determine the relationships between sharable objects in different
components, and (2) detect possible conflicts in their structural representations. The devel-
opment of such a facility within the federation layer assists and helps in applying methods
for resolving representational differences among a number of databases participating in the
federation.

Existing approaches for conflict resolution in integrated database systems are based on
heuristics [HR 90, NEM+86, SLC+88], classification [SSG+91], semantic proximity concept
[SK 93], or fuzzy and incomplete knowledge [FN 92, VH 93], etc. These approaches may lead
to inaccurate resolution of the semantic problems. Our approach considers the enforcement
of structural representation and semantics resolution by the definition of a Dictionary of
Terms and a Dictionary of Semantics both provided for each database schema at the Node
Federation Layer. The Dictionary of Terms serves for automatic conflict resolution about the
meaning and resemblance of objects in terms of their naming and structural representation,
while the Dictionary of Semantics helps the schema integration process and to manually
solve conflicts that are not automatically detected. The database schema integrator also uses
the dictionary of semantics in order to understand the structure of each database schema
for the participating sites in the federation.

For the integrated schema, one global dictionary is required per application environ-
ment to describe the terms and the semantics (Terms.dic, Semantics.dic). For the export
schemas, also one dictionary is required for each export schema (e.g. <Exp>Terms.dic and
<Exp>Semantics.dic).

3Heterogeneity in names and data structures is a natural consequence of independent creation and evo-
lution of autonomous databases that are tailored to the specific requirements and characteristics of each
application.

6.2. GFI2S Information Integration Approach 135

Hereafter, are the BNF-Like descriptions of the dictionary of terms and the dictionary
of semantics, followed by some examples:

Dictionary of Terms

Term ::= <identifier><relationship><identifier>,[]
Identifier ::= literal
Relationship::= X-equal | M-equal | Synonym
X-equal ::= syntactically equal
M-equal ::= semantically equal

Example of Terms:

’Hardware’ M-equal ’Device’
’Device’ Synonym ’Machine’
’Serial number’ M-equal ’Code’

Dictionary of Semantics

Semantic Concept ::= <class name>:[<class description>]
[<attribute definition>]

class name ::= identifier
class description ::= literal expression
attribute definition ::= <attribute name>:<attribute description>
attribute name ::= identifier
attribute description ::= literal expression

Example Semantics:

Hardware: this class can be a Device or a machine
h_name: hardware name
h_SN: hardware serial number

6.2.2.3 Federated Derivation Primitives

Research work in the direction of defining a set of derivation primitives still lack standards
and comprehensive necessary concepts for schema derivation and for mapping specification.
Radeke [Rad 96] proposes an ODMG extension for federated database systems, in which the
schema derivation is supported through the filtering process, based on the DROP command.
Within the exported schema the DROP command specifies the attributes, relationships, and
methods to be filtered from the local schema. However, the approach does not define a clear
export schema for the shared data, rather it gives the list of concepts to be filtered from
the local schema. Therefore, the complete elements of the local schemas at the underlying
database are not hidden from the user. While, the main aim in collaborative systems is
to limit the external access to only the part of information to which users gain access
rights. Similarly, Busse et al. [BFN 94] describes an approach to introduce the notion of
virtual classes for the evolving object database standard ODMG. However, virtual classes
are represented as views, for which the derivation and mapping information is given as a
queries that provide full instantiation of the virtual classes. Since the approach assumes a
one-to-one correspondence between the integrated instances and due to the complexity in

136 Chapter 6. GFI2S - Generic and Flexible Information Integration System

integrating the relationships, the approach does not properly adapt to distributed databases
and support for their different query languages and data models is not fully supported.
Recent work presented by Roantree et al. [RKB 01] provides an extended object definition
language for view schema integration, based on the standard model for object-oriented
databases. It also provides ODLv language for view specifications and ODLw language for
wrappers specifications. In our approach, we consider the schema integration to be addressed
from two perspectives: (1) providing means for export and integrated schemas definitions,
and (2) defining the derivation operations that maps the classes and attributes in the base
schemas to those in the derived schemas.

Regarding point (1), for export and integrated schemas definition, we use an object
definition language specifications to define these schemas. The ODL syntax is used to define
the classes of the derived schemas and to specify the relationships between these classes.
Thereby, an export schema, for instance, differs from other schemas by only being a subset
of an existing local schema, while an integrated schema is a subset of the union of a number
of local and export schemas of other sites.

Regarding point (2), related to derivation operations, a strong language for schema
derivation must be designed and developed. The schema derivation language must define the
derivation mapping for the exported/integrated classes and their attributes. The approach
we propose for the derivation operations, distinguish between two types of derivation: class
derivation and attribute derivation. These derivation primitives define the mapping between
the derived classes/attributes in the derived schema and the basic classes/attributes in the
base schemas. The schema derivation language suggested here is based on the PEER Schema
Definition and Derivation Language SDDL [AWT+94, WA 94], and extends their definitions
in order to achieve an open strategy for the schema derivation. Our approach also considers
derivations based on the user-defined functions, especially, in the case of the attributes
instantiation. For the class derivation the following constructs are supported: rename,
union, restrict, and subtract. The attribute derivation can use any user-defined function to
derive new instances from the base schemas. The rename construct is also supported for
the attribute derivations.

Two approaches are suggested for the efficient implementation of the class and attribute
derivation. In the first approach, the various functions for the class and attribute deriva-
tion will be provided in form of shared libraries or dynamic link libraries (DLLs), which
will be linked to the node federation layer (NFL) of each site. A second possibility, is
to define these functions as persistent stored modules (SQL/PSM) or Call-Level-Interfaces
(SQL/CLI) within the SQL environment. Shared libraries will be provided by the devel-
opers for interfacing through the programming languages within C, C++, Pascal, Delphi,
etc. while, SQL/PSM and SQL/CLI are provided for interfacing trough standard database
connectivity mechanisms such as OBDC, JDBC, and Embedded-SQL.

The following sections describe in more details the mapping operations/constructs for
attribute and class derivation. In the given descriptions: C stands for ‘class-name@schema-
name’ and AC represents the set of all attributes in class C. The domain of C is denoted
by Dom(C) and the domain of AC is denoted by Dom(AC).

CCC = { all legal classes of schema S}
AC = { all legal attributes in class C}
ACACAC = { all legal attributes of schema S}
Let I : CCC→ Dom(CCC)
I(C) = {the set of all instances of class C}

6.2. GFI2S Information Integration Approach 137

I(C) ⊆ Dom(C), where
Dom(C) =

∏

a∈AC

Dom(a)

Attribute Derivation

A derived attribute is defined by an attribute derivation expression as follow:

derived-attribute-definition := derived-attribute-name = <a-expr>
a-expr := class-name.attribute-name[@schema-name] |

user-defined-function

Attribute derivation is accomplished by specifying an attribute either as a rename of
another attribute or by a user-defined function. The semantics of the primitives defined for
the attribute derivation are provided below, where a represents an attribute in class C and
Dom(a) represents all the legal values of attribute a .

Dom(AC) =
⋃

a∈AC

Dom(a)

The two constructs, defined for the attribute derivation, are defined below.

1- Rename

The attribute Rename operation derives a new attribute a from the attribute a1, where a
and a1 are two attributes in classes C and C1.

C.a = C1.a1 (6.1)

Represents:
∀o1 ∈ I(C1), ∃o ∈ I(C) : o.a = o1.a1

Where:
o, o1 are two objects (instances) of classes C and C1 respectively, and
a, a1 are attributes of classes C and C1 respectively.

Example:
Organization.Name = Department.DeptName@Exp7

The attribute Name in the class Organization is derived from the attribute DeptName
of class Department.

2- User Defined Function

The User-defined-function derives a new attribute a from a set of attributes a1, a2,..an by
applying the function f , thus,

a = f(a1, a2, . . . , an) (6.2)

Represents:
f : Dom(a1)×Dom(a2)× · · · ×Dom(an) → Dom(a)

138 Chapter 6. GFI2S - Generic and Flexible Information Integration System

Where a is the derived attribute by applying the function f to the attributes ai in the
base classes Cj , 1 ≤ j ≤ n.

Following is a simplified BNF-Like notation for the user-defined function concept:

user function :: <type> <identifier> ([param-list]) <function-body>
<param-list> :: <type> <identifier-list>,
function-body :: <statement-list>
statement-list :: a list of statements in a certain programming language
identifier-list :: a list of identifiers
identifier :: an identifier in a certain programming language

Example:
Organization.NumOfEmployees@INT = Sum (Faculty.Staff@ExP3, Faculty.Researchers@Exp3)

The attribute NumOfEmployees of class Organization in the integrated schema (INT)
is derived as summation of the attributes Staff and Researchers in export schema (Exp3)
from the class Faculty, where Sum is a user-defined function with two parameters of type
Integer. The Sum function can be defined as follow:

int Sum (int n1, int n2) {return = n1 + n2;}

Class Derivation

In schema derivation, a derived class is constructed from other classes using Union, Restrict,
Subtract, and other primitives as described below. A derived class is defined by a class
derivation expression as follow:

derived-class-definition := derived-class-name = <c-expr>
c-expr := class-name@schema-name |

union (<c-expr>, <c-list>) |
Subtract (<c-expr>, <c-expr>) |
Restrict (<c-expr>, restriction) |
Derive (<c-expr>, <derived-attribute-definition>)

c-list := <c-expr> | <c-expr>, <c-list>

The following constructs provide the semantics for the class derivation.

1- Rename

The class Rename operation derives a new class C from another class C1.

C = C1 (6.3)

Represents:
I(C) = I(C1), where C is the derived class and C1 is a class in the base schema S1.

Example:
Organization@INT = Faculty@Exp3

The class Organization in the integrated schema INT is derived from the class Faculty
in export schema Exp3.

6.2. GFI2S Information Integration Approach 139

2- Subtract

The class Subtract operation derives a new class C by subtracting instances of class C2 from
class C1.

C = subtract(C1, C2) (6.4)

Represents:
I(C) = I(C1) \ I(C2), where C is the derived class and C1 and C2 are classes in base

schemas S1 and S2.

Example:
Organization@INT = subtract (department@Loc, Faculty@Exp3)

3- Restrict

The class Restrict operation derives a new class C from a class C1 based on certain restriction
predicate P .

First, let us define a comparison predicate Comp as follow:
Comp = {AθV |

A is an attribute
V ∈ Dom(A)
θ ∈ {≤,≥, =, <>, <,>}}

We add the Not operator to the Comp predicate:
CCComp = Comp ∪ {Not(C) | C ∈ Comp}
Now we define a global predicate:
PPP = P1φP2

P1, P2 ∈ PPP OR P1, P2 ∈ CCComp
φ ∈ {AND, OR}
C1 ∈ CCC, P ∈ PPP

C = restrict(C1, P) (6.5)

Represents:
I(C) = {o ∈ I(C1) : P (o)}, where C is the derived class and C1 is a class in a base

schema S1.

Example:
Organization@INT = restrict (department@Exp7, Employees<25)

Following is a BNF-like description of restrictions:

restriction :: <predicate>[<AND|OR|NOT> <predicate>,]
predicate :: <attribute><operator><range-attribute>
operator :: = | <> | >= | =< | < | >

4- Union

The class Union operation derives a new class C from a set of classes C1, C2, . . . , Cn.

C = Union(C1, C2, . . . , Cn) (6.6)

140 Chapter 6. GFI2S - Generic and Flexible Information Integration System

Represents:
I(C) = (I(C1) ∪ I(C2) ∪ . . . ∪ I(Cn)), where C is the derived class and Ci are classes in

a certain other base schemas Sj , j∈[1...k].

Example:
Organization@INT = Union (Department@Exp7, Faculty@Exp3)

The class Union operation will be demonstrated in more details in the next example
with the Derive construct. The Derive operation Derives a new class C from the a class C1

by applying the attribute derivation operations.

5- Derive

The class Derive operation derives a new class C from another class C1 by applying a number
of expressions Ei specifying the attributes derivation.

C = Derive(C1, E1, E2, . . . , Ek) (6.7)

Ei is an expression defining the attributes derivation. It applies the attribute derivation
primitives, namely, attribute rename and user-defined function:

• Ei : ai = aj , where ai is an attribute of class C and aj is an attribute of class Cj .

• Ei : ai = fi(a1, a2, . . . , aj), where ai is an attribute of class C and a1, . . . , aj are
attributes of classes C1, C2, . . . , Cj .

Attributes(C) = {range(fi)}i∈[1...k]

I(C) = {V ∈ Dom(C) | ∃o1 ∈ I(C1) : V = (E1(o1), . . . , Ek(o1)}
or

I(C) = {V ∈ Dom(C) | ∃o1 ∈ I(C1) : V = (a1 = E1(o1), . . . , ak = Ek(o1)}

Figure 6.11 illustrates a derivation example of a simple integrated schema INT. First, we
define three simple schemas (Exp7, Exp3, and INT), using the ODL specification. Second,
we specify the derivation operations of the class Organization in the integrated schema INT.
In this example, the derivation is specified in two steps:

1. Specify the derive operations at each of the classes Department in Exp7 and Faculty
in Exp3. The derive operations specify the expressions related to the derivation of the
corresponding attributes of class Organization.

2. Derive the class Organization in the integrated schema INT as a Union of the derived
classes Department and Faculty from the export schema Exp7 and Exp3.

6.2. GFI2S Information Integration Approach 141

//--- Definition of Schema Exp7
Class Department : Persistent {

attribute String DeptName;
attribute Short Employees;
attribute String Field;

}
//--- Definition of Schema Exp3
Class Faculty : Persistent {

attribute String Faculty;
attribute Short Staff;
attribute Short Researchers;
attribute String Area;

}
//--- Defintion of Schema INT
Class Organization : Persistent {

attribute String Name;
attribute Short NumOfEmployees;
attribute String Interset;

}
//--- Derivation Specification of Schema INT
Organization@INT = Union (Derive(Department@Exp7,

Name=DeptName,
NumOfEmployees=Employees,
Interest=Field),

Derive(Faculty@Exp3,
Name=Faculty,
NumOfEmployees=Sum*(Staff, Researchers),
Interest=Area))

* Int function Sum(int s, int t)
return (s + t)

Figure 6.11: Schema Definition and Derivation Specification - an example

Figure 6.12 illustrates an instantiation example corresponding to the derivation prim-
itives, defined in figure 6.11. The example also shows the cases of attribute rename and
user-defined function (e.g Sum).

DeptName Employees Field

Computer Science
Physics
Mathematics

22
37
12

Research
Experimentation
Education

Faculty Staff Researchers Area

Science
Medicine
Sociology

33
45
22

15
37
23

Research

Unknown

Name NumOfEmployees Interest

Computer Science
Physics
Mathematics
Science
Medicine
Sociology

22
37
12
48
82
45

Research
Experimentation
Education
Research

Unknown

Class C1 Class C2

Class C

Figure 6.12: Classes and Attributes Instantiation - an example

142 Chapter 6. GFI2S - Generic and Flexible Information Integration System

6.2.2.4 Federated Query Processing

The task of the Federated Query Processor (FQP) is to process and respond to queries that
may require accessing authorized data, and extracting and combining data from multiple
sources. The sources are usually heterogeneous and geographically distributed. In other
words, the federated query processor performs the functions of coordinating the sub-queries
execution and provides a gateway to the multiple distributed data sources, where this com-
plexity and distribution are hidden from the user; namely they are indistinguishable to the
user from that of accessing a single database.

Figure 6.13 illustrates the steps involved in a federated query execution, which include:

1. The federated query processor first decomposes the query posed against the integrated
schema into sub-queries on the local/remote data sources with their own local schema.

2. Various sub-queries are executed locally at the corresponding nodes and the sub-results
are sent back to the federated query processor.

3. The federated query processor combines the local partial results into the common
format and sends the complete results to the user requesting it.

The local and federated query processors are assisted in their functionalities with the set
of resources specified at the local and federated layers.

INT
Schema

User

Local
Result1

1

2

3

Global
Results

Local
Resultn

Query1 Queryn

Federated Recourse
Specifications

Node 1 Node n

FQP
Results Assembly

FQP
Query Decomposition

Query

Figure 6.13: Federated Query Processor – The Steps

After defining the federated layer for different data sources within the federation, autho-
rized users can either access the data in a tightly coupled way by creating their integrated
systems or in a loosely coupled manner via direct on-line access to the shared data. There-
fore, queries can also be individually submitted to an export schema at each node’s federated
layer without passing through the integrated schema. When a query is formulated against
the export schema, the following actions will take place:

• The query will be rewritten by the Local Adaptation Layer (LAL), in order to be
conforming to the local query language. The query is translated based on the local
resources specifications (LRS) of the underlying data source,

6.2. GFI2S Information Integration Approach 143

• The query is executed against the local underlying data source from which, the export
schema is derived,

• The query result will be reorganized to fit the export schema, and returned to the user
that has requested it. The Local Adaptation Layer reformats the results based on the
local resources specifications (LRS) of the underlying data source,

Figure 6.14 illustrates the performing mechanism of the federated query processor and
its interaction with the local query processor at each local database system. The federated
query processor supports:

• Decomposition of the query arrived from an application (in common format) to a set
of sub-queries, each to be sent to the corresponding underlying data source.

• Assembly of the partial returned sub-results into a common coherent format that can
be understood by the requesting users/applications.

Sub Result
(Common
Format)

Result
Local format

1 2

3

45

Application Query Query
Decomposer

Sub-query Local Query
Translation

Local Query Local Query
Execution

Local Result
Transformation

Result
Assembler

Results
(Common format)

Local Query ProcessorFederated Query Processor

Figure 6.14: Federated Query Processor – Performing Mechanism

Federated Query Decomposer

The Federated Query Decomposer is a component of FQP, which decomposes a federated
query to a set of sub-queries, each to be sent to the corresponding underlying data sources
to be answered. The sub-queries are expressed using the common query language that is
adopted at the federation layer. When a sub-query arrives at a site, the LAL at that site
performs the translation of the sub-query to conform to the local query language and then
it executes it.

Results Assembler

The Results Assembler is another component of FQP that combines the various sub-query
results for every federated query, in the format of the common data model (CDM). Similar
to the query translation process, the LAL at each site performs the transformation of the
sub-query result from the local format (of its underlying data source) to the common format
adopted at the federation layer. The Results Assembler then, merges the data produced by
several local sites into a single format corresponding to the CDM.

144 Chapter 6. GFI2S - Generic and Flexible Information Integration System

6.2.3 Application of Database Standards and Middleware Solutions
in GFI2S

Considering the wide variety and heterogeneity of networked applications, any efficient so-
lution for their integration/interoperation must involve the use of standard mechanisms for
applications modeling, data structuring and information retrieval. Standard mechanisms
eases the design and building of integration mechanisms for collaborative environments, and
solves many barriers faced in the integration process. For instance, the use of emerging
standards for application modeling (e.g. UML), for data structuring (e.g. ODL), for infor-
mation retrieval (e.g. SQL or OQL), and for data exchange (e.g. OIF and XML) reduces
the need for construction of individual data translation wrappers among integrated nodes,
and facilitates the development of necessary federated query processor. However, similar
to many others, in the database area, standards lag behind in supporting new features and
extensions provided by certain commercial and research prototypes of database manage-
ment systems. Most DBMS’s extensions nowadays address the development of advanced
constructs to better support the ever-growing requirements of emerging applications. The
new constructs provided by these database systems address multimedia data types, object-
orientation concepts, interoperation/integration facilities, distributed computing, etc.

The GFI2S federated architecture, as conceived and described in this chapter, presents
an open and flexible solution towards a generic approach for information exchange and data
integration, applying standards to the extent possible, and suggesting their extension when
standards are not available (see figure 6.15).

• On one hand, from the database development perspective, ODL is used in GFI2S to
support the portability of database schemas across conforming ODBMSs. OIF and
XML are used to exchange objects between databases and provide database docu-
mentation. Simultaneously, independent access facilities among the data sources are
supported through middleware solutions (e.g. ODBC, JDBC, and JAVA).

• On the other hand, from users, applications, and database accesses perspectives, the
GFI2S system targets a comprehensive solution, based on standard interfaces and
languages (e.g. SQL, OQL, Java, and C++), which:

– Provide most of the requested information for users and applications,

– Facilitate the access to the heterogeneous and autonomous data sources,

– Support flexible access to those underlying data sources based on standard tech-
nologies and via secure and reliable export schemas mechanisms,

– Support multimedia information and large data sets.

The use of database standards and middleware solutions facilitate the exchange of in-
formation among different applications. Namely two aspects are emphasized. First, full
and rich representation of the schema concepts, query language, and data representation
are supported through the object-oriented database standards e.g. ODL, OQL, and OIF.
Second, the user facilities and data transparency are supported through Web standards and
Middleware solutions e.g. ODBC, Java, and XML. More details on the applicability of these
standards and middleware to GFI2S are included in Appendix A. Some of the problems
that face the standardization process are also addressed and discussed within these sections.

6.2. GFI2S Information Integration Approach 145

Format
B

Legacy systems
(Flat-files and Databases)

Database access

- ODL
- OIF
- XML

ODBMS

Adapter

C++

JAVA

OQL

SQL/SQL3

Adapter Adapter

Object-orientedUser
Interfaces

DBA
Program

Access independent Framework

Facilitating Applications

- ODBC
- JDBC
- Java

Format CFormat A

Distributed

Figure 6.15: GFI2S - Global Overview

6.2.4 GFI2S in Action

The GFI2S system is designed (and partially implemented) to better solve the information
integration issues that were initially tackled in Chapters 3, 4, and 5. The flexible GFI2S
architecture can support a wide variety of collaborative environments, from a fully federated
network of expert systems supporting distributed control applications(e.g Waternet), to a
distributed Virtual Laboratory environment (e.g. VL), and even for brokerage of informa-
tion from remote sites. This section describes one example operational case of the GFI2S
system for brokerage of information for distributed, heterogeneous, and autonomous sites.
This example shows the quality of GFI2S and illustrates the main benefits gained when
deploying the GFI2S approach. The example also demonstrates the integration of GFI2S
with universal access to data, data export, and other tools as explained in Chapter 5.

The example presented in figure 6.16 illustrates a flexible framework, which is based on
the GFI2S architecture. The three-tier (client/server) architecture adopted here for web
services satisfies many information management requirements for the entire interoperation
and collaboration tasks among distributed networked heterogeneous data sources and ap-
plications. It mainly (1) deploys the GFI2S system, following the node-to-node federation
approach, at the lower-tier; (2) a set of interfaces for data access and direct interaction
among heterogeneous data sources using middleware and standard solutions, and (3) sup-
ports a number of defined users/applications accessing the integrated information system
via these interfaces.

In more details, the global architecture presented in figure 6.16 is composed of the fol-
lowing components:

❶ At the GFI2S Federated Layer (lower-tier), the approach for integrating autonomous
and heterogeneous data sources is addressed from two sides. On one hand, it develops
a Local Adaptation Layer (LAL) for each data source, participating in the federated
network. On the other hand, it builds the Node Federation Layer (NFL) on top of the
conceptual data model (CDM) of the federated schema. The LAL components assure

146 Chapter 6. GFI2S - Generic and Flexible Information Integration System

proper communication between the local data sources and their federated layer. While,
the NFL component supports the inter-connection of different information sources at
the federated layer.

Flexible View-based
Access

Safe/Reliable
Data Export

Internal
User

Remote
Application

Administrator

External
User

Lower tier
GF2IS Layer

Middle tier
Access Facilities

Federated Schema

Conceptual Database
Model

U
ni

ve
rs

al
 D

at
a

A
cc

es
s

Sp
ec

if
ic

 A
cc

es
s

F
ac

ili
ti

es
 (

D
ri

ve
rs

)

Local Adaptation
Layers (LALs)

File DB Web

HTML/XMLSQLI/O

F
ul

l D
at

ab
as

e
A

cc
es

s

Federated Q
uery

P
rocessor

Client tier
Users/Applications

M
id

dl
eW

ar
e

&
 S

ta
nd

ar
d

so
lu

ti
on

s

Integration
Layer

NFL

Figure 6.16: Global Architecture and Interfaces to GFI2S

Additionally, The GFI2S architecture employs middleware and standards to provide
standardized interfaces for all types of data (structured and unstructured), maximizing
interoperability and reusability, while leaving the data either at the place where it is
generated or where it is heavily used.

❷ At the middle tier layer, three types of interfaces for local/remote data access are
supported. The interfacing components facilitate the access to information for each
type of authorized users in a secure and confident manner. The access to data is a
dynamic process, which consists of direct interaction with heterogeneous data sources.
The developed interfaces allow the access to the underlying heterogeneous data sources
via the use of middleware and standard solutions (e.g. ODBC, JDBC, Java, and XML).
The three main interfaces illustrated in 6.16 present the global access facilities to the
underling heterogeneous database systems through GFI2S, which mainly include:.

❄ Universal data access and direct interaction with heterogeneous data sources
using middleware solutions and standards.

❄ Specific access facilities (tailored interfaces) to data. These interface also dynam-
ically interact with the remote data sources, but they are application dependent.

❄ Full access for administrators to heterogeneous remote data sources through the
GFI2S tier.

These interfaces can also be used as a base for several enhancements. As such, from
the Universal Data Access interface two variants were derived: the Safe/Reliable Data
Export and the Flexible View-Based Access interface.

6.3. Conclusion 147

❸ From the client tier, the four types of users/applications, which can access the data
within such a system are:

❆ Database Administrator (DBA) that has full access to all data sources, and can
update both the data and meta-data. The database administrator has the ability
to access the data through standard tools or via specific access facilities.

❆ Users inside the organization (internal users/developers) are supported by a flex-
ible data access interface, which is based on view definition for information vis-
ibility rights and security for access. Internal users may also have the ability to
update the part of data of their responsibility.

❆ External users (collaborators) are supported by safe/reliable data export facilities
through which, they can access information of their interest in an open and secure
manner. In addition to the user friendly and flexible screen-based presentation
of the requested information, this interface also supports the provision of data
in several physical standard formats (OIF, XML, HTML, etc.) that can be up-
loaded at the user site. The safe and reliable data export interface only supports
restricted read accesses.

❆ Specific applications that are clearly defined and are not expected to change
are supported through specific application-dependent interfaces. These applica-
tions need self interaction with the database, information is requested from the
database when needed and will be delivered at the requesting time.

6.3 Conclusion

The architecture of the Generic and Flexible Information Integration System (GFI2S) is
designed as a unified federated object-oriented layer that can support the integration of
information among heterogeneous and autonomous data sources. Thus, supporting the
information exchange and collaboration among heterogeneous and autonomous nodes. In
this system, a data source can represent any database built using a commercial DBMS
product, or any information source (e.g. a file system). The integrated schema, defined
within the node federation layer of GFI2S, provides users with a consolidated view of the
information shared for the purpose of collaboration. The integrated schema is defined at the
federated layer of every node in the network, while the data corresponding to it is distributed
among the individual local/remote data sources. Thus, data in all of the local and remote
nodes is accessible by others as if it belongs to a single local database.

The GFI2S integration architecture is constituted of two main components: the Lo-
cal Adaptation Layer (LAL) and the Node Federation Layer (NFL). This decomposition
properly serves the need for sites’ interoperation and information sources integration. The
GFI2S architecture presents a flexible approach based on standards and middleware solu-
tions, through which:

1. The Local adaptation Layer (LAL) at each node, defines the set of mechanisms
and concepts that facilitate the access to underlying local data sources in their native
format, and the control of their access rights.

2. The Node Federation Level (NFL) at each node, acts as a mediated common in-
terface that sits between the local system and other external data sources participating
in the federation.

148 Chapter 6. GFI2S - Generic and Flexible Information Integration System

The GFI2S federated architecture, as conceived and described in this chapter, presents
an open and flexible solution towards a generic approach for information exchange and data
integration:

• From the database development perspectives, ODL is used in the GFI2S to sup-
port the portability of database schemas across conforming ODBMSs, and OIF and
XML are used to exchange objects between databases and provide database documen-
tation. Simultaneously, independent access facilities among the data sources are sup-
ported through standards and middleware solutions (e.g. ODBC, JDBC, and JAVA).

• From the user access perspectives, the GFI2S system targets a comprehensive
solution, based on standard interfaces and languages (e.g. SQL, OQL, Java, and
C++), which facilitate the access to distributed, heterogeneous, and autonomous data
sources. The flexible access to those underlying data sources is achieved through
standard technologies and via secure and reliable export schemas mechanisms.

As such, the GFI2S federated approach allows the integration of databases and appli-
cations that are distributed, autonomous, and heterogeneous.

Chapter 7

Conclusions and Future Work

7.1 Overview

A wide variety of distributed applications are nowadays emerging in diverse domains of sci-
ence, business, engineering, education, e-commerce, tourism, etc. These applications deploy
various database systems for the management of their information, in which the diversity
stems from reasons related to the specific information management requirements and the
objectives targeted by these applications. Other reasons may also concern suitability, effi-
ciency, and security. In today’s organizations, new and existing applications such as design,
manufacturing, or decision making environments, require access to data stored in several of
pre-existing databases detained at several local and remote sites. To satisfy the new infor-
mation management requirements of these organizations, a strong information integration
system must be designed and developed, serving the need for information integration and
interoperation among these organizations.

This dissertation describes the design and development of an information integration
approach to support the integration of heterogeneous information sources while preserving
their local autonomy and distribution. The first step in this direction consists of a global
survey focusing on the related research and approaches for information integration and in-
teroperation among autonomous and distributed systems. The survey of existing approaches
emerging in this domain forms the state-of-the-art and the related research work for the
dissertation. Considering the main emphasis of the thesis, this survey is conducted by a
classification of existing approaches and methodologies for information integration. Classi-
fication of these approaches, as addressed so far by other researchers, is mostly based on
three concepts of database architectures, data access and storage mechanisms, and systems
interoperation. The taxonomy for information integration approaches, proposed in chapter
2, divides them into two main categories: Distributed Systems and Integrated Systems. Dis-
tributed systems typically share common database control software at both DBMS servers
and applications. Integrated systems however, support database applications that address
decentralized/autonomous database control, using different representations and data model-
ing systems. Within each of these two categories several approaches are identified, studied,
and evaluated based on the applications’ requirements.

Research on integrated systems distinguishes between Physical Integration and Virtual
Integration. In a Physical Integration the data originating from local and remote sources are
integrated into one single database on which all queries can operate. In Virtual Integration,

149

150 Chapter 7. Conclusions and Future Work

data remains on the local/remote sources, queries operate directly on them and data inte-
gration takes place on the fly during the query processing. At deeper levels of the taxonomy,
when the required level of integration becomes more complex and when the requirements
are higher, the variety of the proposed approaches becomes more and more specific and
complex. On one hand, the physical integration expands into centralized databases and data
warehouses. In a centralized database, information is migrated from various sources into
a universal DBMS, while in data warehousing information may be imported in different
format and volume than it exists in its originating sources. On the other hand, the virtual
integration derives into federated and non-federated systems. Furthermore, each of these
systems can be either loosely or tightly coupled.

Most approaches presented and discussed in chapter 2, do not properly support the ex-
tensibility and the evolution of applications, rather they address specific domain-dependent
cases. Adding a new site to the federation, or applying a given approach to a different
application domain, requires considerable expertise and effort in order to interface it with
all systems participating within the federation. Still, these approaches bring considerable
advantages, which can be adapted and deployed. The information integration approach,
we presented in chapter 6, benefits from these approaches and follows a strategy, support-
ing standard languages, generic tools, and middleware solutions. The major benefits from
which, the integration approach takes advantages are discussed in details in section 7.2.

The development of several systems and tools to support the management and exchange
of information and the data integration purposes, during the preparation of the thesis, has
provided the means to better understand the complexity of such processes, and to better
deploy standard tools and middleware solutions.

1. The Waternet system, presented in chapter 3, aims at an evolutionary knowledge
capture and management system supporting the control, optimal operation, and deci-
sion making for the management of water distribution in a network of expert systems,
provided the proper environment for developing an open and flexible architecture for
integration of different Waternet modules. From the development of the Waternet in-
tegrated/federated environment, we learned how to design and develop flexible, open,
and reliable environments for information management systems supporting the follow-
ing characteristics:

• System openness, so that different sites can be added to/removed from the fed-
eration community, in order to support the specificities of different application
domains.

• Data distribution, so there is no need to develop a single global schema and a
common glossary of concepts among the networked sites.

• Complete data location transparency to the user, of logical/physical distribution
of information among the sites in the network.

The developed aspects and the lessons learned, during the design and development
of the Waternet system, contributed to GFI2S by tackling the fundamental schema
management challenges at the federation layer, and by serving the system openness
through the adoption of the data adapters at the node layer.

2. The MegaStore framework, presented in chapter 4, aims at the design and set-up of
the necessary database structure and platform architecture for advanced e-commerce
applications, and in specific, addressing the CD and music industry. It provides a

7.1. Overview 151

good example for the deployment of database standards and middleware solutions.
Its development is supported through the coupling of Web standards and middleware
with advanced database technologies. The main idea behind the developed framework
for MegaStore is to design a comprehensive system to support applications with the
following characteristics:

• Facilitate the storage and manipulation of multimedia large data sets.
• Provide a flexible information classification and clear separation between public

and proprietary data.
• Extend Web services in E-Business applications with the functionalities for flex-

ible navigation through complex Web objects, scalability as necessary for mul-
timedia large objects, high performance as required by multi-users applications,
and so on.

The design and development of MegaStore framework contributed to GFI2S through
(1) the deployment of database standard and Internet Middleware supporting sys-
tem reusability, (2) the development of a parallel/distributed database server assuring
system efficiency, and (3) the development of user friendly interfaces assisting ad-
vanced/ordinary users in accessing the underlying information sources.

3. The Virtual Laboratory (VL) Information Management, presented in chapter 5,
aims at the design and development of a software layer and an enhanced architecture,
supporting scientists in their experimentations, and providing the basic information
management requirements for the emerging multimedia applications in e-science. Our
contribution within VL Information Management focuses on specific advanced features,
functionalities, and facilities introduced and developed for management of scientific
data for VL applications. Specific subjects addressed within VL include:

• Strategies for storage and retrieval of large scientific data sets.
• Use of standards for scientific data modeling and archiving.
• Universal and schema free access to scientific data.
• Access to scientific data based on the predefined visibility restricted schemas,
• Scientific Results Publishing, performance issues, Benchmarking tests, etc.

The concepts, addressed within the VL Information Management framework, ad-
dressed a number of important issues that can be applied at every site to better enable
it as a node in the cooperation network. On one hand, individual sites can benefit from
the use of these concepts to efficiently build their applications independently of other
sites. On the other hand, the use of standards at local sites helped the development
of information integration mechanisms for GFI2S.

The approaches for Waternet and MegaStore systems provide specific mechanisms for the
design and development of information integration systems, and illustrate the main benefits
of using standard solutions to support the information sharing and the data integration.
While, the VL Information Management, particularly employs these standard concepts to
the information integration mechanism and provides a forward benefit to it. VL information
management framework applies the Web and database standards at every site, making its
components stronger and more suitable for integration and cooperation, while preserving
their full autonomy and specific characterization. The various concepts and lessons learned

152 Chapter 7. Conclusions and Future Work

during the development of the application cases, described above, have contributed to the
design and partial development of a generic and flexible information integration system.

The Generic and Flexible Information Integration System (GFI2S) is designed
and partially developed to give its users and applications, access to heterogeneous informa-
tion sources through generic and flexible interfaces. The distinctive features of the GFI2S
integration approach reside in (a) the specific combination of database standards and In-
ternet middleware with the fundamental research approaches, and (b) the way in which
they are deployed and inter-linked within the components of GFI2S architecture. Its archi-
tecture smoothes the transition from relational and object-relational database systems to
a system that unifies most DBMSs capabilities. The GFI2S approach, which follows the
ODMG standards, is considered to support different data sources and provides application
developers with a single, seamless application view, and unified access to all information in
those underlying data sources. The GFI2S integration architecture is constituted of two
main components of: (1) Local Adaptation Layer (LAL), that facilitates the access to the
underlying databases in the node, and (2) the Node Federation Layer (NFL), that provides
links to the information and applications outside the nodes and supports the information
sharing and interoperation. This two-component architecture of GFI2S provides existing
systems with efficient means for their interconnection and interoperation, while preserving
their heterogeneity, distribution, and full autonomy. The GFI2S architecture benefits from
existing approaches and applies emerging information technology to support the new re-
quirements of scientific and advanced applications. More details regarding the benefits of
GFI2S comparing to other approaches are described within the next sections.

7.2 GFI2S Compared to Other Approaches

The design approach of GFI2S benefits from the careful choice of its specific components.
The components are decided based on the state-of-the-art in the area of information inte-
gration for systems interoperation. Additionally, in order to support the new requirements
from emerging scientific and advanced applications, the GFI2S approach utilizes database
standards, Internet technology, and Middleware solutions. The main aspects which are taken
into account in the design of GFI2S system are listed below:

❆ Standard languages for data modeling and information access are adopted at the fed-
erated layer of GFI2S. In the area of information exchange and data integration,
several initiatives are emerging in the direction of standardization (e.g. STEP, and
NetCDF). Most initiatives consider their specific terminologies for the data represen-
tation and manipulation. Thus, new standards are appearing rapidly, while, similar
solutions already exists: the database standards. The GFI2S approach benefits from
these initiatives and extends the usage of their architectures via the use of database
standards in term of data modeling, querying language, and information exchange. In
the GFI2S information integration approach, data is not bi-translated, rather, queries
are sent from one site and data is received from the other site.

❆ The federated schema constitution within GFI2S is based on and extends the PEER
approach. PEER uses its specific language for schema definition, mapping derivation,
and query formulation. While, GFI2S uses the UML for data modeling, ODL for
data definition, and OQL for data access and information retrieval. Such an approach
for schema and data management makes GFI2S an open integration facility for other
systems, which are compliant to these standards.

7.3. Lessons Learned 153

❆ The usage of XML and OIF data formats within the GFI2S system, facilitate the
applicability of database concepts to the federation by enforcing the data exchanges
between different organizations in a widely accepted format. The availability of data
in standard formats of XML and OIF, within the collaborative environments, reduces
the number of wrappers to be developed, and facilitates the data translation among
heterogeneous systems when services are requested between them.

❆ The use of Object-Oriented database standards as common languages for data mod-
eling and querying provides the possibility for integrating most types of applications
ranging from the CODASYL network model, to relational model, to object-oriented
and Object-Relational models.

❆ The use of extended ODMG mechanisms supports the mapping specification and
derivation operations between the underlying data sources and the integrated database
schema, at the GFI2S federated layer.

❆ The structural representation and the semantics resolution of data from heterogeneous
sources are enforced at the GFI2S federated layer by a dictionary of terms and a dictio-
nary of semantics. These dictionaries, which are available for each exported/integrated
schema, help users in defining their own federated schemas without the need for ex-
ternal support from experts that devote the sharable (exported) information. The
dictionary of terms serves for automatic conflicts resolution, while, the dictionary of
semantics reflects in fact the experts’ knowledge of the application.

❆ The GFI2S federated architecture adapts the approach of defining conceptual wrap-
pers for legacy databases and developed the Local Adaptation Layer (LAL), in order
to provide interoperability between legacy systems. The LAL extends the role of wrap-
pers to also include information about users authentication and information visibility
levels.

❆ The specific data structure and querying language of each node within the federation
are preserved. Queries formulated at the GFI2S federated layer are translated to be
conform to the local data source query language before being executed. Additionally,
the local results are translated to the common format adopted at the federated layer.
Therefore, the GFI2S federated approach does not require translating the complete
existing data of different databases to the federated layer, rather, it focuses on trans-
lating only the part of data that is needed to be exchanged, e.g. the result of a query
into a common format.

7.3 Lessons Learned

Generic and Flexible Information Integration Systems must satisfy the requirements of Flex-
ibility and Genericness. From the design of the GFI2S information integration approach,
we learned that flexibility of information integration systems resides in the architecture they
rely on, while their genericness can be achieved via the deployment of database standards,
Internet technologies, and middleware solutions. Thus, the learned aspects are to be consid-
ered in the design and development of information integration systems, in order to provide
an open facility for integration/interoperation among heterogeneous, distributed, and au-
tonomous sites. Below is a list of the main lessons learned and the expertise gained within
the design and development work of the various R&D projects, during the preparation of
this dissertation:

154 Chapter 7. Conclusions and Future Work

❶ The use of two components (LAL and NFL) for the information integration among
networked sites makes the integration mechanism flexible. This flexibility is supported
from two sides, on one hand, sites can join or quit the federation; on the other hand,
the schema integration strategy followed at the node federation layer allows for a
customized integration, which can be tailored to the need of each site.

❷ The use of object-oriented database standards and middleware solutions at the feder-
ated layer of the GFI2S makes its architecture generic. Each site that wishes to join
the federation only needs the knowledge about its ”underlying database system” and
about the “standard languages and formats” adopted at the federation layer. The local
users at each site gain proper expertise about the underlying local application’s char-
acteristics and specifications. At the same time, the standard languages and formats
adopted at the federation layer are mostly understood by these users.

❸ The use of standard languages for data definition and information access (ODL,
OQL/SQL, XML), which are widely adopted by a large community, reduces the efforts
needed when defining export and integrated schemas, and facilitates the access to data
within networked applications.

❹ The use of middleware and standards mechanisms for data access (e.g ODBC and
JDBC), information exchange (e.g. XML), and communication protocols(e.g. CORBA)
play an important role in reducing the number of intermediate interfacing tools, unifies
the access to shared information, and facilitates the data integration among heteroge-
neous databases and applications.

❺ The Consideration of data aspects such as, scientific information, large data sets, and
complex inter-linked objects supports the development of complex applications. In
addition, the provision of generic mechanisms and tools for scientific data publishing,
based on tailored views on the sharable data, preserves systems’ autonomy and hides
private data from outside users.

Various concepts, enumerated above, provide the base information integration aspects
for systems interoperation. The next section will identify some of the remaining issues, in
the area of information integration, that need to be further addressed and described.

7.4 Future Work

In order to facilitate the information integration process among heterogeneous applications,
attempts to integrate autonomous, distributed, and heterogeneous applications must be
strongly based on the use of database standards and middleware solutions. Middleware so-
lutions unify the communication process among interconnected applications, while database
standards unify their exchange of data. Thus, the use of database and middleware stan-
dards constitute the base for flexible, open, and generic integration among networked ap-
plications. Use of standards for data modeling and information retrieval also eases the
interoperation/collaboration process with pre-existing application and legacy systems, and
reduces the need for construction of individual data translation wrappers.

However, in order to apply standard concepts to the environment of networked applica-
tions, certain extensions to database and middleware standards must be addressed to better
support the information exchange and data integration among interoperable systems. For

7.4. Future Work 155

instance, In the database area (similar to many others), standards lag behind in support-
ing new features and the extensions provided by certain commercial and research database
management systems.

Following areas require to be further addressed by the researchers in the field of infor-
mation management, by the standardization community, and by the DBMS developers:

• The development of advanced standard constructs to better support the specific re-
quirements of complex scientific applications, and to address their data types, object-
orientation concepts, interoperation/integrated facilities, distributed computing, etc.

• The extension of database definition language to properly support the mapping con-
structs and the derivation operations is required, to better support the federation of
several heterogeneous databases. As such the object definition language (ODL), for
instance, needs to be extended to support the mechanism of schema integration in
the area of federated databases. The extensions to the ODL are expected to address
the definition of export and integrated schemas, and to provide a set of operations
supporting the needs for their derivation mappings.

• The extension of database query language with object-oriented features is required.
Currently, different DBMS developers use their specific SQL/OQL extension mech-
anisms, which differ from one DBMS to another. To overcome the issue of specific
extensions, if not by standardization, there must be a consensus among DBMS devel-
opers about these extensions; at least a common agreement regarding the main required
features such as object identifier, inheritance, path expression, and cross-relationship
references must be achieved.

• The consideration of standard data exchange formats, e.g. XML for databases and in
particular for information integration, raises several challenges for database research.
Having XML focused only on the syntax for data representation partially increases the
prospect of its integration. To support information integration at the semantic level,
however, there must be a further standardization or agreements upon DTDs (schemas)
in XML. Furthermore, at present, the XML data does not conform to a fixed schema;
names and meanings of the used tags are arbitrary and the data is self-describing
in XML documents. Therefore, several XML-issues need to be addressed to enable
the information integration (e.g. languages for describing the contents and capabili-
ties of XML sources, query reformulation algorithms, translation among DTD’s, and
obtaining source descriptions).

In addition, we must also admit that the issue of information integration is of a very
high complexity, especially when the information sources are heterogeneous, distributed,
and their local autonomy is preserved. This thesis work described a high level architecture
for information integration, in order to give a global overview of a generic and flexible
information integration system. Therefore, complete descriptions and full coverage of all
the components of GFI2S are out of the scope of this dissertation. Several components of
GFI2S are addressed to the required level of details, while others are globally described,
leaving a number of issues and problems to be further addressed by other researchers. Among
the remaining issues that require further research, we enumerate: updates in federated
schemas, derivation mappings to cover the relationship concepts, and better addressing
technology-independent issues (e.g. theories, and formal specifications). Some other issues
in the domain of information integration were already addressed by the research community,
for that reason these issues are addressed but not fully described in GFI2S (e.g. federated
query processing, wrappers, and semantics resolution).

156 Chapter 7. Conclusions and Future Work

However, the GFI2S architecture is flexible enough to be augmented with software com-
ponents, which are designed/developed by other research/software institutions. For instance,
the GFI2S architecture allows an application to use an existing tool for conflicts resolution
when defining export and integrated schemas. Such a tool can be based on, and enforced
by, the dictionary of terms and dictionary of semantics defined at the federation layer of
GFI2S.

Appendix A

Application of Database and
Middleware Standards in FGI2S

The GFI2S federated architecture, as conceived and described in Chapter 6, presents an
open and flexible solution towards a generic approach for information exchange and data
integration. GFI2S uses object-oriented standards and middleware solutions to the extent
possible, and suggests their extension when standards are not available.

• From the database development perspective, object-oriented database standards are
used in GFI2S to support the portability of database schemas across conforming
ODBMSs, to exchange objects between applications, and to provide database docu-
mentation.

• From users, applications, and database accesses perspectives, the GFI2S system tar-
gets a comprehensive solution, based on Web standards and middleware solutions to
facilitate the access to the heterogeneous and autonomous data sources,

This appendix describes the use of object-oriented and Web standards to facilitate the
exchange of information among different applications and databases. Namely, two aspects
are emphasized. First, full and rich representation of the schema concepts, query language,
and data representation are supported through the object-oriented technologies and stan-
dards e.g. ODL, OQL, and OIF, as described in subsections of section A.1. Second, user
facilities and data transparency are supported through Web standards and Middleware tech-
nologies e.g. ODBC, Java, and XML, as described in subsections of section A.2. Some of
the problems that face the standardization process are also addressed and discussed within
these sections.

A.1 Object-Oriented Standards and Extensions Adap-
tation for GFI2S

This section illustrates the benefits gained when deploying database standards for the man-
agement of information and data integration. It also addresses extensions to these standards
to better support the integration/interoperation process for the schema modeling, the query

157

158 Chapter A. Application of Database and Middleware Standards in FGI2S

formulation, and the data representation; from the various formats adopted at the local data
sources to the common format adopted at the integration/interoperation level.

Object-Oriented standards are defined and specified to better support the portability of
database schema and database objects across conforming ODBMSs. Portability in object
database management systems would allow an application program that is written to access
one ODBMS to be able to access another ODBMS, as long as both ODBMSs support the
ODMG standard faithfully.

The various components of the ODMG specification, from which the integration (inter-
operation) process can benefit, include [CBB+00]:

• An Object Model, which gives database capabilities including definition of relationships,
extents, collection classes, and concurrency control.

• An Object Definition Language (ODL), which allows defining a database schema in a
programming-language in terms of object types, attributes, relationships, and opera-
tions.

• An Object Query Language (OQL), which includes support for object sets and struc-
tures and supports object identity, complex objects, path expressions, operation invo-
cation, and inheritance.

• Language Bindings to Java, C++, and Smalltalk, which extends the respective lan-
guage standards to allow the storage of persistent objects; each binding includes sup-
port for OQL, navigation, and transactions.

Currently, ODMG is the only standard interface that allows to store Java objects di-
rectly using a standard API that is completely database independent, indifferently of the
underlying storage mechanism, being a relational or an object database. If the database
system has an interface that conforms with ODMG, it can store objects directly using the
standard Java API.

In conjunction to object-oriented databases, object-relational DBMSs emerged as a way
of enhancing the capabilities of relational DBMSs with some of the features that appeared
in object-DBMSs. These features include wide variety of data types, complex objects, and
audio/video data streams. Examples of object-relational DBMSs, which are emerging nowa-
days, include Informix Universal Server, Oracle, Matisse, and DB2 Universal Server.

The extension of database standards can also be adapted, to properly support the map-
ping constructs and the derivation operations within a federation of heterogeneous databases.
The following sub-sections describe in more details the application of the ODMG standard
to schema integration and systems interoperation.

A.1.1 Object Definition Language – ODL

The object definition language (ODL) provides the semantic power for schema definition and
offers a standard, which can be extended to support the mechanism of schema integration
in the area of federated databases. The extensions to the ODL are expected to address the
definition of export and integrated schemas, and the provision of a set of operations serving
the need for mapping and derivation. Some research work started a decade ago considering
the extensions of ODMG-ODL standard, to also support the schema integration and its
evolution. The research is also advancing in the direction of federated schema in ODMG

A.1. Object-Oriented Standards and Extensions Adaptation for GFI2S 159

[BFN 94], extending the ODMG for federated databases [Rad 96, KJR 98], and extending
ODL for object-oriented views integration [RKB 01].

Extention of ODL, by researchers and developers in the area of federated databases,
provides a powerful mechanism, semantically rich, for integrating schemas from multiple
heterogeneous data sources, and to define a virtual database that can be queried just like
any stand-alone/centralized database. Extended ODL can be used for export and integrated
schema specification from two perspectives. It can be successfully used for: (a) export and
integrated schemas definition, and (b) the mapping specifications for the derived schemas,
namely operations for the data translation e.g. join, select, and intersect. In GFI2S, Export
and Integrated schemas definition comply to the ODL syntax, with only the exception that
an export schema is a subset of a local schema, while the integrated schema is a subset of
the union of the local schema with a number of imported schemas. Similarly, the derivation
operations, for export and integrated schemas, are based on a schema derivation language,
which extends the ODL syntax and benefits from other derivation languages developed to
better support the information integration among heterogeneous and distributed applica-
tions. More details regarding the federated derivation primitives and some examples are
provided in section 6.2.2.3.

Hereafter, we present a simple data modeling example that will be used within the next
sub-section. In this example from the scientific domain, an Experiment is defined by its:
domain, results, date, and it is performed by a (Scientist). the scientist is in turn, defined
by his name, (working) field, and the Experiments that he/she performs . In a relational
model, this can be represented as follow:

Experiment (Exp ID, Sc ID, Domain, Results, Date)
Scientist (Sc ID, Exp ID, Name, Field)

Using the ODMG-ODL language, the complete definition for this simple scientific appli-
cation is presented as follow:

Interface Experiment:{
attribute String Domain;
attribute String Results;
attribute Date Date;
relationship SET<Scientist> PerformedBy
Inverse Scientist::Performs;

}

Interface Scientist: {
attribute String Name;
attribute String Field;
relationship SET<Scientist> Performs Inverse
Experiment::PerformedBy;

}

The links between the two entities in the relational model are expressed through the
notion of foreign keys (e.g. Exp ID and Sc ID). While, in object-oriented model, links are
explicitly expressed through the relationship concept (e.g Performs and PerformedBy).

160 Chapter A. Application of Database and Middleware Standards in FGI2S

A.1.2 Query Languages – SQL, SQL3, and OQL

Query languages are considered to facilitate the interaction with the database and permits
the management and maintenance of its instances. Within the area of database query
languages, SQL is continuing its evolution towards a new standard called SQL3, which is
extended to deal simultaneously with tables from the relational model and classes from
the object model. SQL3 language extends SQL standard by incorporating object-oriented
capabilities and features such as complex data types, user-defined routines, inheritance, and
indexing extensions.

Similarly to SQL3, the Object Query Language (OQL), enhances the data types, pred-
icates, relational operations, triggers, user-defined types, transaction capabilities, user-
defined routines, and extends the SQL language to include object-oriented capabilities. Its
syntax for queries is similar to the syntax of the relational standard query language SQL,
with some additional features for object model concepts, such as object identity, complex
objects, inheritance, polymorphism, path expression, and cross-reference relationships.

To illustrate an example of these extensions to the SQL standard language, let us consider
the example from the scientific domain presented at the end of the previous section. An
SQL query, for instance, requesting experiment results performed by a scientist named ‘John’
before ‘May 12, 2001’, involves condition predicates upon the two entities Experiment and
Scientist. Using the relational model, the query request can be formulated as follow:

SELECT Results FROM Experiment WHERE Date <= ’12-05-2001’ AND Sc ID IN
(
SELECT Sc ID FROM Scientist WHERE Name = "John"

)

While using an extended Matisse-SQL, which is based on the object model, a query for
the same request, is formulated as follow:

SELECT Results FROM Experiment WHERE
Date <= ’12-05-2001’ AND PerformedBy.Scientist.Name = "John"

SQL Queries in object-oriented/object-relational DBMSs are formulated slightly different
than in a standard SQL. Matisse-SQL, for instance, is enhanced to deal with the challenging
applications of today by incorporating the object-relational concepts, which mainly concern
object identity, inheritance, encapsulation, path expression, and support for multiple data
types and complex objects.

Thus, when it comes to extending the SQL standard, different DBMS developers use their
specific extension mechanisms, which differ from one DBMS to another. To overcome this
issue, there must be certain kind of consensus (or standardization) among DBMS developers
concerning these extensions. At least a common agreement regarding the common extensions
such as: object identifier, inheritance, path expression, and cross-relationship references.

Hereafter, we illustrate some of the object-oriented/object-relational extensions to the
SQL language. These examples are demonstrated using the Matisse DBMSs, and address the
concepts of object identifiers, inheritance, cross-reference relationships, and path expression
mentioned above.

A.1. Object-Oriented Standards and Extensions Adaptation for GFI2S 161

Matisse DBMS uses the keyword OID within a select query to retrieve the object iden-
tifier of the database objects; and uses the keyword ONLY within a select query, to only
retrieve the direct instances of a given class. As such, in the example below, the query “select
only * from scientist” will not retrieve instancest that are subclasses of Scientist. The third
example below illustrates the usage of relationships and path expression concepts.

OID : Select OID, * from Experiment
Inheritance : select only * from Scientist
Relationship &
Path expression

: select * from Experiment where PerformedBy.Scientist.Name=’John’

Among the factors that have made SQL a successful standard is its simplicity, especially
for non-expert database users. OQL lacks this feature, especially in some cases when query-
ing complex data models involving relationships and complex data types (structures, lists,
arrays, blobs, etc.). The manner, in which, queries are defined is very hard to understand,
even by users that are quite familiar with database terminology.

Within OQL, we believe that the language must be strongly based on the use of object
identifiers, cross-relationship references, and path expression. The following example, for
instance, retrieves the Experiments Performed By a Scientist with the OID=’0x124’.

SELECT * FROM Experiment E
WHERE E.PerformaedBy.Scientist.OID = ’0x124’

A.1.3 Object Interchange Format - OIF

Cattel et al. [CBB+00] defines the object interchange format (OIF) as a specification lan-
guage used to dump and load the current state of an ODBMS to/from one or more files.
Therefore, the OIF format can be used to exchange persistent objects between ODBMSs,
seed data, provide documentation, and derive test suites. Since OIF allows the specification
of persistent classes and their states, it can also be considered as a facility for information
exchange between database systems and among heterogeneous applications.

In comparison to the XML standard, on certain aspects, OIF provides a similar powerful
facility for data representation and information exchange between databases and applica-
tions. However, two major and distinct issues separate these two standards from each other.
The first issue concerns the format for the data representation, where the OIF format only
preserve the types, attributes, and relationship identifiers, as provided by the ODL defini-
tion of the ODBMS schema. While, the XML format uses additional naming tags for data
representation, which requires extra effort for their handling. The second issue, relates to
the consideration and the use of these standards. Even considering the first issue, which
seems in favor of the OIF format, the XML standard is far more better and widely used by
users and groups in several application domains, than the OIF standard that still has not
had the chance for strong considerations by these groups and developers.

During the development of some projects related to the MegaStore framework, presented
in Chapter 4, and also related to the Virtual Laboratory project, presented in Chapter
5; an OIF facility is developed serving the requirements of information exchange between
databases and applications. The development of such a tool is motivated by the need
for adequate facility for archives and backups, for information exchange between different
applications, and for preserving the data consistency; specially, to facilitate the projects

162 Chapter A. Application of Database and Middleware Standards in FGI2S

in which new versions of DBMSs are released or when a different operating system and
platform are to be considered.

The OIF tool developed for these projects (called Mt Oif), is specific only for Matisse
ODBMS, supports the database back-ups and recovery, and provides a facility for data
exchange between different versions of Matisse ODBMSs with full support for different plat-
forms (e.g. Sun Solaris, Linux, and Windows). All these tasks are performed through the
single Mt Oif set of code. Following is the syntax of the Mt Oif tool:

Mt Oif DB@host [user psswd] in|out [oif file]
Usage: Mt Oif DB@host [user psswd] in|out [oif file]

DB : Database Name
Host : Host Name
user : User Name
psswd: User Password
in : load an oif file
out : generate an oif file
File : File Name that contains data in OIF format to be loaded/generated

The following example command Dumps the data from the database Sc Experiment, which
runs on amelie.wins.uva.nl, and generates a backup file, named Sc Exp Backup.oif.

Mt Oif Sc Experiment@amelie.wins.uva.nl out Sc Exp Backup.oif

The loading of the generated OIF file into another database called Sc Exp Bk, which
runs on the other host carol.wins.uva.nl, passes through the “in” parameter as follow:

Mt Oif Sc Exp Bk@carol.wins.uva.nl in Sc Exp Backup.oif

The Mt Oif tool handles all the rich and complete data types supported by Matisse
ODBMS, which include among other types: Date and TimeStamps, lists and arrays, large
and binary objects, and audio and video streams. As such, the audio and video streams are
treated within the OIF format as lists of elements, similar to the way they are handled by
the Matisse DBMS itself.

A.2 Web Standard and Middleware Adaptation for GFI2S

In addition to ODMG, usage of standards like Java, CORBA, and XML can provide in-
teroperability and portability to applications involving databases with different database
models and systems. This section addresses a number of emerging information technologies
from the perspective of how they could support higher levels of interoperability. Among the
emerging technologies, which are relevant to interoperability and more related to the subject
of this chapter, we cover in this section:

• Object Database Connectivity ODBC,

• Multi-platform applications development using Java,

• XML standard for information exchange

A.2. Web Standard and Middleware Adaptation for GFI2S 163

More standards relevant to interoperability are further emerging nowadays for infor-
mation handling technologies, among which, we enumerate CORBA1, Jini2, DCOM3 (Dis-
tributed Component Object Model), SOAP4 (Simple Object Access Protocol), WAP5 (Wire-
less Application Protocol), and High-Portability Programming Languages. These technolo-
gies are however not addressed within this dissertation, due to space limitation. Readers
interested in investigating these specific technologies in depth can refer to [TB 00, WAP 00,
Vin 97].

A.2.1 Object Database Connectivity - ODBC

Providing common interfaces to heterogeneous databases has been a challenging issue in
the domain of data access and information retrieval through standards. Open Database
Connectivity (ODBC) provides a certain level of standard access using SQL as a standard
language for interaction with the underlying database. Figure A.1 illustrates the data access
mechanism using ODBC standard, which offers an open facility that provides a common set
of API calls to manipulate databases. Using ODBC, users are able to develop a single
application program that can access different DBMSs. This mechanism allows developers to
build and distribute a client-server type of application without being restricted to a specific
DBMS.

Remote
Database

ODBC
Driver Manager

Application

ODBC
Driver

Figure A.1: Application Access to Remote Database via ODBC

In addition, ODBC is considered as a good interface for supplying data. A summary of
advantages for using ODBC over native database APIs include:

• Providing an open standard, which is already supported by many development groups
and organizations in research, industry, and academia.

• Enabling access, from a common set of code, to data from different relational and
object-oriented database systems (e.g. Oracle, Matisse, Sybase, and MySQL).

Although ODBC allows developers to build and distribute client-server applications with-
out targeting a specific DBMS, it has many limitations when used as a programming inter-
face. For instance, consider the case that in many cases, different DBMS vendors support
the common basic functionalities defined by standard ANSI SQL 92. However, the various

1Common Object Request Broker Architecture (http://www.omg.org/)
2Jini TMConnection Technology Executive Overview (http://www.sun.com/jini/overview/)
3DCOM – Distributed Component Object Model (http://www.microsoft.com/com/tech/DCOM.asp)
4SOAP - Simple Object Access Protocol (http://www.develop.com/soap)
5WAP Forum Specifications (http://www.wapforum.org/what/technical.htm)

164 Chapter A. Application of Database and Middleware Standards in FGI2S

extensions and added-values to different database systems has forced DBMS developers in
this area to extend the SQL standard to support their added value features and new built-in
data types. This is the case, especially with the appearance of object relational and object-
oriented databases, in which the extensions mainly concern object identifiers, abstraction,
inheritance, and cross reference relationships. The database system developers therefore
find themselves forced to support the new challenging features also via the extensions of the
ODBC, which is by origin relational. It is at this level where the differences between the dif-
ferent ODBC drivers become more important and this is one of the reasons, which explains
some differences between different ODBC drivers, each specific for a database management
system.

Still the use the ODBC standard is of a significant importance, since even if there are dif-
ferences between the different DBMSs when addressing the object-oriented/object-relational
extensions, these differences are minor and does only require minor changes in the devel-
opment codes. In other words, changing the application’s program to access a different
database will only require slight changes, which concern the object-oriented/object-relational
extension. Therefore, applications can be easily ported from one database to another by
switching the ODBC driver and making the required changes instead of rewriting the entire
application.

A.2.2 Use of JAVA for Application Programming

Java is the most promising computer language to increase the ability to share software easily
across heterogeneous applications of different types. With the appearance of the Internet
and the Web, Java fulfills its potential as an object-oriented programming language suitable
for supporting networked environment, and becomes the de facto standard programming
language for Web applications.

The Java object-oriented technology helps in research and development as an impor-
tant software language for implementing interoperable information management systems, in
particular, when used, with its associated Internet technologies (e.g. J2EE6, JDBC7, and
EJB8), in web-based applications. It gives users the flexibility and dynamism, and brings a
good potential for making legacy systems appear in a more Internet-friendly language. Java
applets, for instance, can act as front-ends for accessing the capabilities of remote legacy
system, where Internet users can access those legacy systems without having to create map-
ping code, and without caring about knowledge of the special access mechanisms that are
hidden from them. Therefore, the obvious benefit for Java applications developers is that
the combination of application and database programming into a single environment means
that developers only have to deal with one data model.

There are emerging types of applications, largely driven by Java and the Web, where
direct object storage, whether to a relational or an object database, is a clearly superior
solution. Java fully supports this feature through the ODMG standard and best suites in
environments that need to provide connectivity to a variety of DBMS servers and hetero-
geneous databases and that require significantly high level of concurrently connected users,
where performance and scalability are required.

6J2EE: Java 2 platform, Enterprise Edition
7JDBC is a trademark name, often though to stand for Java Database Connectivity
8EJB: Enterprise Java Beans

A.2. Web Standard and Middleware Adaptation for GFI2S 165

A.2.3 Use of XML for Information Exchange

Very rapidly, since its ratification by the World Wide Web Consortium (W3C) in 1998, XML
is already becoming the de facto standard for data communication and information exchange
among distributed organizations and applications. One of the main applications that benefits
from XML is thus, the information exchange and data integration among heterogeneous
databases. Similar to ODMG and Java standards, the advantages of using XML standard
is to reduce the number of wrappers serving the interoperation among heterogeneous and
distributed databases and applications.

Regarding the integration approach of GFI2S, presented in this chapter, its architec-
ture can be augmented with the XML standard for data exchange representation. In such
architecture, the data transformation to XML format will be performed at different sites
of the federation, where the local XML wrapper processes and transforms the data from
a specific representation to an XML notation. Meanwhile, the merging of data is a global
process, to be performed at the federated layer, and then organizing the data to fit the in-
tegrated schema that is defined at the federated layer. This approach allows the unification
of data transformation process at the federated level, where a universal module can trans-
form and merge the returned sub-results simply, by using the XML data and the mapping
specifications defined for it.

Integrating XML data across applications and databases is of great interest for the
database community; efficient techniques for integrating XML data across local- and wide-
area networks are an important research focus. However, the consideration of XML in
databases and in particular for information integration, raises several challenges for database
research. Having XML focusing only on the syntax for data representation only partially ad-
vances the prospects of their integration. To support information integration at the semantic
level however, there must be a certain type of agreement among all involved database nodes
upon specific DTDs in XML. For instance, if the XML data does not conform to a fixed
schema; names and meanings of the used tags are arbitrary and the data is self-describing
in XML documents. According to Alon Levy [AL 99], there are several issues that need to
be considered to enable such integration. Among these issues we mention a few important
ones; some of these issues are already being addressed by current research.

• Languages for describing the contents and capabilities of XML sources, which provide
the semantic mapping between the data in the source and the relations in the mediated
schema. The main challenges involve (1) the restructured data appearing in XML is
richer than in relational data, (2) scaling up to a very large number of XML sources
must be supported, and (3) exploiting the knowledge conveyed by accompanying DTDs
is required.

• Query reformulation algorithms, which require the development of algorithms for effi-
ciently reformulating user queries, posed on a mediated schema, to queries that refer to
different underlying XML data sources. The known techniques for reformulation from
the relational case do not extend easily to languages for querying XML documents.

• Translation among DTDs, which provides the proper tools and facilities to translate
XML data conforming to one DTD into an XML document conforming to a different
DTD, presumably with semantically related content.

• Obtaining source descriptions, which develops methods for automatically(semi-automatically)
computing source descriptions for newly introduced XML data sources; becomes sig-
nificant when the number of data sources grows.

166 Chapter A. Application of Database and Middleware Standards in FGI2S

Some challenging research work on using XML for information exchange is reported in
[SFP 00]. Some advances are also evolving in the areas of information management and data
integration [AL 99, MMA 99, BF 01], views definition [Abt 99], scientific data archiving
[PWD+99], and graphical querying languages [SFP+99]. Among the developed systems,
which deploy the XML syntax and the XML query engine: the Tukwila data integration
system [IHW 01] can be mentioned, which is designed specifically for processing network-
bound XML data sources, and Tox [BBM+01]: a repository for XML data and metadata,
which supports real and virtual XML documents.

Bibliography

[AAC+99] S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet, and T. Milo. Active Views
for Electronic Commerce, In Proceedings of the 25 th International Conference
on Very Large Databases - VLDB’99, pages 138-149, Edinburgh, Scotland, UK,
September 1999.

[ABB+01] H. Afsarmanesh, R. Belleman, A.S.Z. Belloum, A. Benabdelkader, J.F. Jo van
den Brand, T.M. Breit, H. Bussemaker, G.B. Eijkel, A. Frenkel, C. Garita, D.L.
Groep, A.W. van Halderen, R.M.A. Heeren, Z.W. Hendrikse, L.O. Hertzberger,
J. Kaandorp, E.C. Kaletas , V. Klos, P. Sloot , R.D. Vis , A. Visser , and H.H.
Yakali. VLAM-G: A Grid-Based Virtual Laboratory. In Journal of special issue
on grid computing, IOS press Publishers, 2001.

[ABH 98a] H. Afsarmanesh, A. Benabdelkader, and L.O. Hertzberger. A Flexible Approach
to Information Sharing in Water Industries. In Proceedings of International
Conference on Information Technology – CIT 98, McGraw-Hill Publishers, pages
135-142, Bhubaneswar, India, December 1998.

[ABH 98b] H. Afsarmanesh, A. Benabdelkader, and L.O. Hertzberger. Cooperative Infor-
mation Management for Distributed Production Nodes. In Proceedings of the
10 th International IFIP WG Conference On The Globalization of Manufacturing
in the Digital Communications Era of the 21st Century: Innovation, Agility, and
the Virtual Enterprise - PROLAMAT 98, Kluwer Academic Publishers, pages
13-27, Trento, Italy, September 9-12, 1998.

[ABK+00] H. Afsarmanesh, A. Benabdelkader, E.C. Kaletas, C. Garita, and L.O. Hertzberger.
Towards a Mulit-layer Architecture for Scientific Virtual Laboratories. In Pro-
ceedings of the 8 th International Conference on High Performance Computing
and Networking - EuropeHPCN 2000, Springer, pages 163-176, Amsterdam, The
Netherlands, May 2000.

[Abt 99] S. Abiteboul. On Views and XML, In Proceedings ACM Symposium on Princi-
ples of Database Systems, pages 1-9, 1999.

[ACM 00] P. Atzeni, L. Cabibbo, and G. Mecca. Database cooperation: classification and
middleware tools. In Journal of Database Management, 2000.

[ADO 01] ActiveX Data Objects (AD0) - Programmer’s Guide. c© 1998-2001 Microsoft
Corporation, all rights reserved. 2001.

[AE 95] H. Assal and C. Eastman. Engineering Database as a Medium for Translation.
In Proceedings of the International Conference CIB W-78, Stanford, CA, 1995.

167

168 Bibliography

[AHW+98] D.R. Adams, D.M. Hansen, K.G. Walker, and J.D. Gash. Scientific Data Archive
at the Environmental Molecular Science Laboratory. In Proceedings of the Joint
Conference on Mass Storage Systems, College Park, Maryland, March 1998.

[AKB+01] H. Afsarmanesh, E.C. Kaletas, A. Benabdelkader, C. Garita, and L. O. Hertzberger.
A Reference Architecture for Scientific Virtual Laboratories. In Journal of Fu-
ture Generation Computer Systems. Special issue: High Performance Comput-
ing and Networking. Volume 17, Number 8, pages 999-1008. North-Holland
Publishers, June 2001.

[AL 99] A. Levy. More on Data Management for XML. University of Washington, May
9th, 1999. (to be completed)

[ASP 01] Active Server Pages Guide. c© 2001 Microsoft Corporation, all rights reserved.
2001.

[Atz 99] P. Atzeni. Databases and the World Wide Web. In Proceedings of the SOF-
SEM’99, Theory and Practice of Informatics, Lecture Notes in Computer Science
1725, Springer-Verlag, pages 147-159, 1999.

[Atz 98] P. Atzeni. Web Sites Need Models and Schemes. In Proceedings of the 17 th

International Conference on Conceptual Modeling- ER ’98, Lecture Notes in
Computer Science, Volume 1507, pages 165-167, Singapore, November 1998.

[ATW+94] H. Afsarmanesh, F. Tuijnman, M. Wiedijk, and L.O. Hertzberger. The Imple-
mentation Architecture of PEER Federated Object Management System. Tech-
nical Report. Department of Computer Systems, University of Amsterdam, The
Netherlands, 1994.

[ATW+93] H. Afsarmanesh, F. Tuijnman, M. Wiedijk, and L.O. Hertzberger. Distributed
Schema Management in a Cooperation Network of Autonomous Agents. In
proceedings of the 4th IEEE International Conference on Database and Expert
Systems Applications - DEXA’93, Springer, pages 565-576, Prague, Czech Re-
public, September 1993.

[AVF+92] P.M.G. Apers, C.A. van den Berg, J. Flokstra, P.W.P.J. Grefen, M.L. Kersten,
A.N. Wilschut. PRISMA/DB: A Parallel, Main Memory Relational DBMS. In
proceedings of the IEEE Transactions on Knowledge and Data Engineering. vol.
4, No. 6, pages 541-554, December 1992.

[AWH 94] H. Afsarmanesh, M. Wiedijk, and L.O. Hertzberger. Flexible and Dynamic In-
tegration of Multiple Information Bases. In Proceedings of the 5 th International
IEEE Conference on Database and Expert Systems Applications - DEXA’94,
Springer, pages 744-753, Athens, Greece, September, 1994.

[AWT+94] H. Afsarmanesh, M., Wiedijk, F. Tuijnman, M. Bergman, and P. Trenning.
The PEER Information Management Language User Manual. Technical Report
CS-94-14, Department of Computer Systems, University of Amsterdam, The
Netherlands, 1994.

[BA 00] A. Benabdelkader and H. Afsarmanesh. Enhanced DC Model for Scientific Data
Archive. Internal Report, Faculty of Science, Informatics Institute, University
of Amsterdam, The Netherlands, March 2000.

[BA 98a] A. Benabdelkader and H. Afsarmanesh. A Flexible Interoperation Framework
for Distributed Multi-Agent Applications. Technical Report CS-98-08, Institute
of Computer Science, University of Amsterdam, The Netherlands, 1998.

Bibliography 169

[BA 98b] A. Benabdelkader and H. Afsarmanesh. Development of the PEER Federated
Layer for Modules Integration in WATERNET. Technical Report CS-98-07, In-
stitute of Computer Science, University of Amsterdam, The Netherlands, 1998.

[BAG 98] A. Benabdelkader, H. Afsarmanesh, and C. Garita. Specification of an Ob-
ject Oriented Infrastructure for Data Management in Water Industries. Techni-
cal Report CS-98-06, Institute of Computer Science, University of Amsterdam,
The Netherlands, 1998.

[BAH 00] A. Benabdelkader, H. Afsarmanesh, and L.O. Hertzberger. MegaStore: Ad-
vanced Internet-based Electronic Commerce Service for Music Industry. In Pro-
ceedings of 11 th IEEE International Conference on Database and Expert Systems
Applications - DEXA’2000, Springer, London - Greenwich, United Kingdom,
September 2000.

[BAH 99] A. Benabdelkader, H. Afsarmanesh, and L.O. Hertzberger. Database Support
for Multi-media Information in Web Based Applications. In Proceedings of In-
ternational Conference on Computer Technologies - MICCT99, pages 169-184,
Tizi Ouzou, Algeria, June 1999.

[BAH 99a] A. Benabdelkader, H. Afsarmanesh, and L.O. Hertzberger. The Virtual Mega-
Store System Implementation. Technical Report CS-99-05, Faculty of Science,
Research Institute Computer Science, University of Amsterdam, The Nether-
lands, 1999.

[BAH 99b] A. Benabdelkader, H. Afsarmanesh, and L.O. Hertzberger. The Virtual Mega-
Store System Architecture: Analysis and Design. Technical Report CS-99-04,
Faculty of Science, Research Institute Computer Science, University of Amster-
dam, The Netherlands, 1999.

[BAK+00] A. Benabdelkader, H. Afsarmanesh, E. C. Kaletas, and L.O. Hertzberger. Man-
aging Large Scientific multi-media Data Sets. In Proceedings of Workshop on
Advanced Data Storage / Management Techniques for High Performance Com-
puting, Warrington, United Kingdom, February 2000.

[Bald 90] R.W. Baldwin. Naming and grouping privileges to simplify security management
in large databases. In Proceedings of IEEE Computer Society Symposium on
Research on Security and Privacy, pages 61-70, Oakland, 1990.

[BAR+01] A. Benabdelkader, H. Afsarmanesh, R. Schut, and L.O. Hertzberger. e-MegaStore
concept for current music stores models: Free RecordShop, LuisterPaal, and
Sheet Music. Poster in ICT KennisCongress, DenHaag, The Netherlands,
September 2001.

[BAS+99] M. Bergman, G.D. van Albada, H. Simon, H. Buchner, P.M.A. Sloot, and V.
Friedrich. Brain activity and parallel computing. In Proceedings of the 5 th

annual conference of the Advanced School for Computing and Imaging - ASCI,
pages 44-45, Delft, the Netherlands, June 1999.

[BBE 99] A. Bouguettaya, B. Benatallah, and A. Elmagarmid. An Overview of Multi-
database Systems: Past and Present. In Management of Heterogeneous and
Autonomous Database Systems, A. Elmagarmid, M. Rusinkiewicz, and A. Shet,
Eds. Morgan Kaufmann Publishers, pages 1-24, San Francisco, California, 1999.

[BBH+99] A. Bouguettaya, B. Benatallah, L. Hendra, J. Beard, K. Smith, and M. Ouz-
zani. World Wide Database - Integrating the Web, CORBA and Databases.

170 Bibliography

In Proceedings of the International Conference ACM - SIGMOD, ACM Press,
Philadelphia, USA, 1999.

[BBM+01] D. Barbosa, A. Barta, A. Mendelzon, G. Mihaila, F. Rizzolo, and P. Rodriguez-
Gianolli. ToX: The Toronto XML Engine. In Proceedings of the International
Workshop on Information Integration on the Web. Rio de Janeiro, 2001.

[BBO+99a] A. Bouguettaya, B. Benatallah, M. Ouzzani, and L. Hendra. WebFINDIT -
An Architecture and System for Querying Web Databases, In IEEE Journal of
Internet Computing, Volume 3, Number 4, July-August 1999.

[BBO+99b] A. Bouguettaya, B. Benatallah, M. Ouzzani, and L. Hendra. Using Java and
CORBA for Implementing Internet Databases. In Proceedings of the Interna-
tional Conference on Data Engineering, IEEE Society, Sydney, Australia, March
1999.

[BCG+97] M. Baldonado, C.C.K. Chang, L. Gravano, and A. Paepcke. The Stanford Digi-
tal Library Metadata Architecture. In International Journal of Digital Libraries,
Volume 1, Number 2, September 1997.

[BDH+95] P. Buneman, S.B Davidson, K. Hart, and C. Overton. A Data Transformation
system for Biological Data Sources. In Proceedings of the 21 st International
Conference on Very Large Databases – VLDB’95, Zurich, Switzerland, 1995.

[BEM+98] C. Beeri, G. Elber, T. Milo, Y. Sagiv, O. Shmueli, N. Tishby, Y. Kogan, D.
Konopnicki, P. Mogilevski, and N. Slonim. WebSuite – A tool suite for harness-
ing Web data. In Proceedings of the International Workshop on the Web and
Databases WebDB’98. Valencia, Spain, March 1998.

[Ben 00a] A. Benabdelkader. Universal Data Access Through Standards. Internal Re-
port, Faculty of Science, Informatics Institute, University of Amsterdam, The
Netherlands, July 2000.

[Ben 00b] A. Benabdelkader. Accessing Large Objects within the Matisse Database Sys-
tem. Internal Report, Faculty of Science, Informatics Institute, University of
Amsterdam, The Netherlands, May 2000.

[Ben 95] A. Benabdelkader. Intégration des Bases de Données Géographiques Hétérogènes
- cas des Modèles de Terrains. Master Thesis, INSA de Lyon, Université C.B.
Lyon 1, Ecole Centrale Lyon, Université De Savoie, Lyon, France, 1995.

[BF 01] E. Bertino and E. Ferrari. XML and Data Integration. In IEEE Internet Com-
puting, Special Issue on Personalization and Privacy. Volume 5, Number 6,
pages 75-76, November/December 2001.

[BFL+95] P. Brown, D. Fisher, S. Louis, J.R. McGraw, R. Musick, and R. Troy. The design
of a DBMS / MSS interface. NASA EOSDIS project, University of California,
Berkeley and Lawrence Livermore National Laboratory, September 1995.

[BFN 94] R. Busse, P. Fankhauser, and E.J. Neuhold. Federated Schemata in ODMG. In
Proceedings of the Second International East-West Database Workshop, pages
356-379, Springer, Klagenfurt, Austria, September 1994.

[BHG+01] A. Belloum, Z. Hendrikse, D. Group, E. C. Kaletas, and L.O. Hertzberger, The
VL Abstract Machine: a data and process handling system on the grid. In
Proceedings of 9 th International Conference on High Performance Computing
and Networking – HPCN Europe 2001, Springer, Amsterdam, The Netherlands,
2001.

Bibliography 171

[BKS 98] R.G. Belleman, J.A. Kaandorp, and P.M.A. Sloot: Interactive environments for
the exploration of large data sets. In Proceedings of the 4 th annual conference of
the Advanced School for Computing and Imaging (ASCI), pages 264-268. Lom-
mel, Belgium, June 1998.

[BS 00] R.G. Belleman and P.M.A. Sloot. The Design of Dynamic Exploration Environ-
ments for Computational Steering Simulations. SGI Users’ Conference 2000.
Krakow, Poland, October 2000.

[CA 99] L. M. Camarinha-Matos and H. Afsarmanesh. The PRODNET Architecture. In
Infrastructures for Virtual Enterprises - Networking Industrial Enterprises, L.
M. Camarinha-Matos and H. Afsarmanesh, Eds., Kluwer Academic Publishers,
pages 109-126, 1999.

[CBB+00] R.G.G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russel, O.
Schadow, T. Stanienda, and F. Velez. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann Publishers, 2000.

[CD 97] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP
Technology. ACM SIGMOD Record, Volume 26, Number 1, March 1997.

[CL 99] L. M. Camarinha-Matos and C. Lima. PRODNET Coordination Module. In
Infrastructures for Virtual Enterprises - Networking Industrial Enterprises, L.
M. Camarinha-Matos and H. Afsarmanesh, Eds., Kluwer Academic Publishers,
pages 147-166, 1999.

[CM 99] L.M. Camarinha-Matos and F. Martinelli. Application of machine learning in
water distribution networks assisted by domain experts. Journal of Intelligent
and Robotic Systems, Vol. 26, Issue 3/4, pp 325-352, Nov. 99, ISSN 0921-0296.

[CM 97] L.M. Camarinha-Matos and F. Martinelli. Application of Machine Learning
in Water Distribution Networks: An Initial Study. In Workshop on Machine
Learning Application in the real world: Methodological Aspects and Implications,
Nashville, USA, July 1997.

[Cog 00] COGNOS: Intelligence Investment with Cognos EnterpriseServices. May 2000.
Copyright c© 1989-2000. Cognos Incorporated (http://support.cognos.com).

[Com 00] Comshare: Management, Planning, and Control. Serial Number 040.01.0800
Copyright c© 2000 Comshare, Inc. (http://www.comshare.com).

[CP 84] S. Ceri and G. Pelagati. Distributed Databases: Principles and Systems. New
York: McGraw-Hill, 1984.

[CQ 97] G. Cembrano and J. Quevedo. Optimization in water networks. In Proceed-
ings of the international Conference on Computing and Control for the Water
Industry. September 1997.

[Daly 01] D. Daly. The Oracle Migration Workbench Helping you migrate from IBM,
Microsoft, Informix, Sybase and other databases to Oracle9i. Copyright c© 2001
Oracle Corporation. All Rights Reserved.

[DCMI 99] Dublin Core Metadata Element Set, Version 1.1: Reference Description. Dublin
Core Metadata Initiative (DCMI), July 99.

[DD 99] R. Domenig and K. Dittrich. An Overview and Classification of Mediated Query
Systems. ACM SIGMOD RECORD, Volume 28, Number 3, September 1999.

172 Bibliography

[DHA+98] L. Dorst, A. Hoekstra, J.M. van den Akker, J. Breeman, F.C.A. Groen, J. Lager-
berg, A. Visser, H. Yakali, and L.O. Hertzberger. Evaluating Automatic Debit-
ing Systems by modeling and simulation of virtual sensors. In IEEE Instrumen-
tation and Measurement Magazine. Vol 1, Num 2, pages 18-25, June 1998.

[EAG+01] G.B. Eijkel, H. Afsarmanesh, D. Groep, A. Frenkel, R.M.A. Heeren. Mass
Spectrometry in the Amsterdam Virtual Laboratory: development of a high-
performance platform for meta-data analysis. In Proceedings of the 13 th Confer-
ence on Mass Spectrometry: informatics and mass spectrometry, Sanibel Island,
Florida, USA, January 19 - 22, 2001.

[ED 01] S. Ellis and C. Drummond. DB2 r©Warehouse Manager for OS/390 r©and
z/OSTM. White Paper, October 2001, c© Copyright IBM Corp. 2001. All
Rights Reserved.

[EK 91] F. Eliassen and R. Karlsen. Interoperability and Object Identity. SIGMOD
Record, Volume 20, number 4, pages 25-29, 1991.

[EN 00] R. Elmasri and S. B. Navathe, Editors. Fundamentals of Database Systems.
Addison-Wesley Publishers, 3rd edition, 2000.

[FAE+01] A. Frenkel, H. Afsarmanesh, G.B. Eijkel, and L.O. Hertzberger. Information
Management for Material Science Applications in a Virtual Laboratory. In Pro-
ceedings of the 12 th International Conference on Database and Expert Systems
Applications - DEXA 2001, Munich, Germany, September 2001.

[FAG+00] A. Frenkel, H. Afsarmanesh, C. Garita, and L.O. Hertzberger. Information Ac-
cess Rights in Virtual Enterprises. In Proceedings of the 2nd IFIP / MASSYVE
Working Conference on Infrastructures for Virtual Enterprises, Pro-VE 2000,
Florianopolis, Brazil, December 2000.

[FGN 98] G. Falquet, J. Guyot, and L. Nerima. Language and tools to specify hypertext
views on databases. In Proceedings of the International Workshop on the Web
and Databases WebDB’98. Valencia, Spain, March 1998.

[FK 98] I. Foster and C. Kesselman. The Globus Project: A Status Report. In Pro-
ceedings of IPPS/SPDP ’98, Heterogeneous Computing Workshop, pages 4-18,
1998.

[FLM 98] D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the World
Wide Web: A Survey. ACM SIGMOD Record, Volume 27, Number 3, pages
59-74, September 1998.

[FN 92] P. Fankhauser and E. Neuhold. Knowledge based integration of heterogeneous
databases. Technical report.Technische Hochschule Darmstadt, 1992.

[Fow 95] J. Fowler. STEP for Data Management Exchange and Sharing. Volume 8, 214
pages. Technical Appraisals Publishers. November 1995.

[Frt 99] P. Fraternali. Tools and Approaches for Developing Data-Intensive Web Appli-
cations: A Survey. Computing Surveys, Volume 31, Number 3, pages 227-263,
1999.

[FS 96] P.M. Fernandez and D. Schneider. The Ins and Outs (and everything in between)
of Data Warehousing. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, page 541, Montreal, Canada, June 1996.

Bibliography 173

[GAH 01] C. Garita, H. Afsarmanesh, and L.O. Hertzberger. The PRODNET Federated
Information Management Approach for Virtual Enterprise Support. In Journal
of Intelligent Manufacturing, 2001.

[GCL 99] P. Gibon, J.-F. Clavier, and S. Loison. Support for Electronic Data Interchange.
In Infrastructures for Virtual Enterprises - Networking Industrial Enterprises
(L. M. Camarinha-Matos and H. Afsarmanesh, Eds.), Kluwer Academic Pub-
lishers, pages 187-208, 1999.

[Gelb 98] W. M. Gelbart. Databases in Genomic Research. CBC NOTE in CR library,
Science 282, pages 659-661, October 98.

[GR 01] C. O. Garita Rodŕıguez. Federated Information Management for Virtual Enter-
prises. PhD Thesis, University of Amsterdam, November 2001.

[GSB 95] G.S. Barton. Directory interchange format: A metadata tool for the NOAA
earth system data dictionary. In Ronald B. Melton, D. Michael DeVaney, and
James C. French, editors, The Role of Metadata in Managing Large Environ-
mental Science Datasets, pages 19-23. Pacific Northwest Laboratory, Richland,
WA, June 1995.

[GUW 02] Database Systems: The Complete Book. H. Garcia-Molina, J. D. Ullman, J.
Widom. Prentice-Hall Publishers, 2002.

[HA 96] D. M. Hansen and D. R. Adams. A Database Approach to Data Archive Man-
agement. In Proceedings of the First IEEE Metadata Conference, Silver Spring,
MD, April, 1996.

[HBP 94] A. R. Hurson, M. W. Bright, and H. Pakzad. Multidatabase Systems: An
Advanced Solution for Global Information Sharing. IEEE Computer Society
Press, Alamitos, CA, 1994.

[HDB+97] A.G. Hoekstra, L. Dorst, M. Bergman, J. Lagerberg, A. Visser, H. Yakali, F.
Groen, and L.O. Hertzberger. Modelling and simulation of automatic debit-
ing systems for electronic collection on motor highways. In Proceedings of the
International Conference Applied Modelling and Simulation - IASTED. (M.H.
Hamzam, Editors), pages 104-108, 1997.

[Hill 01] D. Hillmann. Using Dublin Core (http://dublincore.org/documents/usageguide/).
Copyright c© 1995-2001 DCMI All Rights Reserved. April 2001.

[HM 99] J. Hammer and D. McLeod. Resolution of Representational Diversity. In Man-
agement of Heterogeneous and Autonomous Database Systems, (A. Elmagarmid,
M. Rusinkiewicz, and A. Shet, Editors), pages 91-117, San Francisco, California,
Morgan Kaufmann Publishers, 1999.

[HM 85] D. Heimbigner and D. McLeod. A federated architecture for information man-
agement. In ACM Transaction on Office Information Systems, Volume 3, Num-
ber 3, pages 253-278, July 1985.

[HR 90] S. Hayne and S. Ram. Multi-user view integration system (MU-VIS): An expert
system for view integration .In Proceedings of the sixth International conference
on Data Engineering.Los Alamitos, CA :IEEE Computer Society Press, February
1990.

[HSM 01] A Guide to Hierarchical Storage Management (HSM). White Paper, Copy-
right c© 2001 Computer Associates International, Inc. All rights reserved.
(http:www.cai.com products hsm netware).

174 Bibliography

[HTH+99] J. L. Hainaut, Ph. Thiran, Jan-Marc Hick, S. Bodart, and A. Deflorenne.
Methodology and Case Tools for the Development of Federated Databases. In
International Journal of Cooperative Information Systems - IJCIS’99. pages
169-194, 1999.

[Hum 00] Hummingbird White Paper. SAP R/3 Data Warehousing and Application In-
tegration, 3034-1W Copyright c© 2000 Hummingbird Communication Ltd.

[Hyp 01] Hyperion Solutions Corporation. Business Intelligence Software. c© Copyright
1998-2001, All rights reserved (http://www.hyperion.com/index.cfm).

[IHW 01] Z. Ives, A. Halevy, and D. Weld. Integrating Network-Bound XML Data. In
IEEE Data Engineering, Bulletin 24/2, June 2001.

[JCF 95] J.C. French. What is metadata? In The Role of Metadata in Managing Large
Environmental Science Datasets, (Ronald B. Melton, D. Michael DeVaney, and
James C. French, editors), pages 3-8. Pacific Northwest Laboratory, Richland,
WA, June 1995.

[JPS+88] G. Jacobsen, G. Piatetsky-Shapiro, C. Lafond, M. Rajinikanth, and J. Hernan-
dez. CALIDA: A knowledge-based system for integrating multiple heteroge-
neous databases. In Proceedings of the 3 rd International Conference on Data
and Knowledge Bases, pages 3-18, June 1988.

[KAB+01] E. C. Kaletas, H. Afsarmanesh, T. M. Breit, and L.O. Hertzberger. EXPRES-
SIVE - A database for micro-array gene expression studies. Technical Report
CS-2001-02, University of Amsterdam, Informatics Intitute, The Netherlands,
2001.

[KAH 01] E. C. Kaletas, H. Afsarmanesh, and L.O. Hertzberger. Virtual Laboratory Ex-
perimentation Environment Data Model. Technical report CS-2001-01, Univer-
sity of Amsterdam, Informatics Institute, The Netherlands, 2001.

[Kar 98] K. Karlapalem. New Aspects of Data Warehousing Environments (keynote talk).
In International Workshop on Data Warehouse Design and OLAP Technology,
in conjunction with DEXA’98. August 98.

[KCG+93] W. Kim, I. Choi, S.K. Gala, and M. Scheevel. On Resolving Schematic Het-
erogeneity in Multidatabase Systems. In Journal of Distributed and Parallel
Databases, Volume 1, Number 3, pages 251-279, 1993.

[KJR 98] K.T. Claypool, J. Jing and E.A. Rundensteiner. OQL SERF: An ODMG Imple-
mentation of the Template-Based Schema Evolution Framework. Proceedings of
IBM Centre for Advanced Studies Conference - CASCON’98, November 1998.

[KRS+99] A. Klen, R. Rabelo, M. Spinosa, and A. Ferreira. Distributed Business Process
Management. In Infrastructures for Virtual Enterprises - Networking Industrial
Enterprises, L. M. Camarinha-Matos and H. Afsarmanesh, Editors, pages 241-
258, Kluwer Academic, 1999.

[LA 86] W. Litwin and A. Abdellatif. Multidatabase interoperability. In IEEE Com-
puter, Volume 19, Number 12, pages 10-18, December 1986.

[Lit 85] W. Litwin. An overview of the multidatabase system MRSDM. In Proceedings
of the ACM National Conference, pages 495-504, New York, October 1985.

[LMR 90] W. Litwin, L.Mark and N. Roussopoulos:Interoperability of Multiple Autonomus
Databases. In ACM Computing Surveys, Volume 22, Number 3, pages 267-293,
September 1990.

Bibliography 175

[MHH 97] S. Mukherjea, K. Hirata, and Y. Hara. Towards a multimedia World Wide Web
Information Retrieval. In Proceedings of the 6th International World Wide Web
Conference. Santa Clara, California, USA,April 97.

[MMA 99] G. Mecca, P. Merialdo, and P. Atzeni. ARANEUS in the Era of XML. In IEEE
Data Engineering Bullettin, Special Issue on XML, September 1999.

[MMR 97] T. Mills, K. Moody, and K. Rodden. Providing World Wide Access to Historical
Sources. In Proceedings of the 6th International World Wide Web Conference.
Santa Clara, California, USA,April 97.

[Mt 01] Matisse: The Object Developer’s Database - System and Manuals. Release 5,
11th Edition, November 2001. Copyright c©19922001 Fresher Information Corp.
All Rights Reserved.

[NDL+00] Y. Ndiaye, A.W. Diene, W. Litwin, and T. Risch. Scalable Distributed Datas-
tructures for High-Performance Databases. In Proceedings of the 3 rd Workshop
on Distributed Data and Structures - WDAS’2000, L’Aquila, Italy, 2000.

[NEM+86] S. Navathe, R. El-Masri, and J. Larson. Integrating user views in database
design. IEEE Computer 19(1):50-62, 1986.

[NK 97] J.C. Nortel, R. Kazman. Web Query: searching and visualizing the Web through
connectivity. In Proceedings of the 6th International World Wide Web Confer-
ence. Santa Clara, California, USA,April 97.

[OAB 99] L. Osorio, C. Antunes, and M. Barata. The PRODNET Communication In-
frastructure. In Infrastructures for Virtual Enterprises - Networking Industrial
Enterprises, L. M. Camarinha-Matos and H. Afsarmanesh, Editors, Kluwer Aca-
demic Publishers, pages 167-186, 1999.

[OV 99] M. Tamer Ozsu and P. Valduriez. Principals of Distributed Database Systems.
Prentice-Hall Publishers, 2nd edition, 1999.

[PH 98] A. J. H. Peddemors and L.O. Hertzberger. A High Performance Distributed
Database System for Enhanced Internet Services. In Proceeding of the 6 th

International Conference on High Performance Computing and Networking –
HPCN’98, Amsterdam, the Netherlands, April 98.

[PP 00] T. Priebe and G. Pernul. Towards OLAP Security Design - Survey and Research
Issues. In Proceedings of the 3 rd ACM International Workshop on Data Ware-
housing and OLAP - DOLAP 2000, pages 33-40, McLean, VA, USA, November
2000.

[PWD+99] M. Papiani, J.L. Wason, A.N. Dunlop, and D.A.A. Nicole. Distributed Scientific
Data Archive Using the Web, XML and SQL/MED. ACM SIGMOD Record,
Volume 28, Number 3, pages 56-62, September 1999.

[RA Inc] RealNetworks, Inc. (http://www.real.com).

[Rad 96] E. Radeke, Extending ODMG for Federated Database Systems, In Proceeding of
the 7 th International Conference on Database and Expert Systems - DEXA’96,
Lecture Notes in Computer Science 1134, Springer Verlag, September 1996.

[REM+89] M. Rusinkiewicz, R. El-Masri, B. Czejdo, D. Georgakopoulos, G. Karabatis,
A. Jamoussi, K. Loa, and Y. Li. Query processing in a heterogeneous multi-
database environment. In Proceedings of the 1 st Annual Symposium on Parallel
and Distributed Processing, 1989.

176 Bibliography

[RK 97] E. Radeke and Kruschinski. Nolte OpenDM/Web: WWW Access to Heteroge-
nous Database Systems. In Proceedings of the International Symposium on
Global Engineering Networking, Antwerb, Belgium, April 1997.

[RKB 01] M. Roantree, J.B. Kennedy, and P.J. Barclay. Integrating View Schemata Using
an Extended Object Definition Language. In Proceedings of the 9th Interna-
tional Conference on Cooperative Information Systems - CoopIS 2001. Trento,
Italy, September 5-7, 2001.. Springer-Verlag Lecture Notes in Computer Science
(LNCS) Volume 2172, 2001.

[RPR+94] M.P. Reddy, B.E. Prasad, P.G. Reddy, and A. Gupta. A methodology for Inte-
gration of Heterogeneous Databases. In IEEE transactions on Knowledge and
data Engineering, Volume 6, Number 6, December 1994.

[SBD+83] P.G. Selinger, E. Bertino, D. Daniels, L. Haas, B.G. Lindsay, G. Lohman, Y.
Masunaga, C. Mohan, P. Ng, P. Wilms, and R. Yost. The Impact of Site Au-
tonomy on R*: A Distributed Relational DBMS. Chapter in Role and Structure
(C. 151-176). Cambridge University Press, London, 1983.

[SC 96] R.S. Sandhu and E.J. Coyne. Role-based access control models. In IEEE Com-
puter, pages 38-47, February 1996.

[Sch 99] A. Schreiber. STEP Support for Virtual Enterprises. In Infrastructures for Vir-
tual Enterprises - Networking Industrial Enterprises, L. M. Camarinha-Matos
and H. Afsarmanesh, Editors, Kluwer Academic Publishers, pages 209-218, 1999.

[SF 94] R.S. Sandhu and H.L. Feinstein. A tree-tier architecture for role-based access
control. In Proceedings of the 17 th NIST-NCS National Computer Security Con-
ference, pages 11-14, Baltimore, 1994.

[SFP 00] S. Ceri, P. Fraternali, and S. Paraboschi. XML: Current Developments and
Future Challenges for the Database Community. In Proceedings of the 7 th In-
ternational Conference on Extending Database Technology – EDBT 2000, pages
3-17, Konstanz, Germany, March 2000.

[SFP+99] S. Ceri, S. Comai, P. Fraternali, S. Paraboschi, L. Tanca, and E. Damiani. XML-
GL: A Graphical Language for Querying and Restructuring XML Documents.
In Proceedings of the 7 th Italian Conference on Database Systems - SEBD 1999,
pages 151-165, Como, Italy, June 1999.

[Sho 97] A. Shoshani. OLAP and Statistical Databases: Similarities and Differences. In
Proceedings of the ACM Symposium on Principles of Database Systems - PODS
’97, pages 185-196, 1997.

[SK 93] A. Sheth and V. Kashyap. So far (schematically), yet so near (semantically). In
Proceedings of the IFIP TC2/WG2.6 Conference on semantics of Interoperable
Database Systems, DS-5. Amsterdam: North-Holland, November 1993.

[SKH+99] P.M.A. Sloot, J.A. Kaandorp, A.G. Hoekstra and B.J. Overeinder. Distributed
Simulation with Cellular Automata: Architecture and Applications. In Pro-
ceedings of the 26 th Conference on Current Trends in Theory and Practice of
Informatics - SOFSEM’99. Lecture Notes in Computer Science 1725, pages
203-249, Milovy, Czech Republic, November 1999.

[SL 90] A. Sheth and J. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, Volume
22, pages 183-236, 1990.

Bibliography 177

[SLC+88] A. Sheth, J. Larson, A. Cornelio, and S. B. Navathe. A tool for integrating
conceptual schemata and user views. In Proceedings of the fourth International
Conference on Data Engineering, pages 176-183. Los Alamitos, CA :IEEE Com-
puter Society Press, February 1988.

[SP 94] S. Spaccapietra, C. Parent. View Integration: A Step Forward in solving struc-
tural Conflicts, IEEE transactions on Knowledge and data Engineering, Volume
6, Number 2, April 1994.

[SS 95] S. Sarawagi. Database systems for efficient access to tertiary memory. In Four-
teenth IEEE Symposium on Mass Storage Systems, pages 120-126, Monterey,
CA, September 1995. IEEE Computer Society Technical Committee on Mass
Storage Systems, IEEE Computer Society Press.

[SS 94] R.S. Sandhu and P. Samrati. Access control: principle and practice. In IEEE
Communication, pages 40-48, September 1994.

[SSG+91] A. Savasere, A. Sheth, S. Navathe, and H. Marcus. On applying classification to
schema integration. In proceedings of IMS’91. The first International Workshop
on Interoperability in multidatabase system, pages 258-261, 1991.

[Syb 99] N. Ward. Industry Warehouse Studio: A Technical Overview. White Paper,
copyright c© 1999 Sybase, Inc. November 1999.

[SYE+90] P. Scheurermann, C. Yu, A. Elmagarmid, H. Garcia-Molina, F. Manola, D.
McLeod, A. Rosental, and M. Templeton. Report on the workshop on hetero-
geneous database systems. In ACM SIGMOD Record, volume 19, pages 23-31,
New York, December 1990.

[TA 93] F. Tuijnman and H. Afsarmanesh. Management of Shared Data in Federated
Cooperative PEER Environment. In International Journal of Intelligent and
Cooperative Systems (IJICIS), Volume 2, Number 4, pages 451-473. 1993

[TB 00] T. Bollinger. A Guide to Understanding Emerging Interoperability Technologies.
c© 2000 The MITRE Corporation, Washington C3 Center, McLean, Virginia,
July 2000.

[TBD+87] M. Templeton, D. Brill, S. K. Dao, E. Lund, P. Ward, A. L. P. Chen, and
R. MacGregor. Mermaid: A front-end to distributed heterogeneous databases.
In Proceedings of the IEEE : Special Issue on Distributed Database Systems,
Volume 75, Number 5, pages 695-708, May 1987.

[TC 97] Z. Tari, H. Chan. A Role-based Access Control for Intranet Security in IEEE
Internet Computing, Volume 1, Number 5, pages 24-34, 1997.

[THB+98] Ph. Thiran, J.-L. Hainaut, S. Bodart, A. Deflorenne, and Jan-Marc Hick. Inter-
operation of Independent, Heterogeneous and Distributed Databases. Method-
ology and CASE Support: the InterDB Approach. CoopIS 1998, pages 54-63,
New York, USA, August 1998.

[THH 99] Ph. Thiran, J.-M. Hick, and J.-L. Hainaut. Generation of Conceptual Wrappers
for Legacy Databases. In proceeding of the 10 th International Conference and
Workshop on Database and Expert Systems - DEXA’99, Pages 678-687, Florence,
Italy, September 1999.

[Tho 91] D.J. Thomsen. Role-based application design and enforcement. In Database
Security IV: Status and Prospects, S. Jajodia and C.E. Landwehr (eds), North-
Holland, 1991, pages 151-168.

178 Bibliography

[TM 96] K.L. Timimi and J. MacKrell. STEP: Towards Open Systems (STEP fundamen-
tals & Business Benefits). Volume 8, 131 pages. CIMdata Publishers, October
1996.

[UML 98] H.-E. Eriksson and M. Penker. UML Toolkit. Wiley Computer Publishing, 1998.

[URB 97] B. Ulanicki, J.P. Rance, P.L.M. Bounds. A systematic approach to Informa-
tion integration in water company. International Conference on Computing and
Control for the Water Industry.1997

[VH 93] V. Ventrone and S. Heiler. A practical approach for dealing with semantic
heterogeneity in federated database systems. Technical report. The MITRE
Corporation, Octobre 1993.

[Vin 97] S. Vinoski. CORBA: Integrating Diverse Applications within Distributed Het-
erogeneous Environments, IEEE Communications Magazine, Volume 35, Num-
ber 2, February 1997.

[VS 99] P. Vassiliadis, T. Sellis. A Survey on Logical Models for OLAP Databases. ACM
SIGMOD Record, Volume 28, Number 4, pages 64-69, December 1999.

[VWH 00] A. Visser, A.J. van der Wees, and L.O. Hertzberger. Discrete Event Modeling
Methodology for Intelligent Transport Systems. In Proceedings of the World
congress on Intelligent Transport Systems, Torino, Italy, November 2000.

[WA 94] M. Wiedijk and H. Afsarmanesh. The PEER User Interface Tools Manual.
Technical Report CS-94-15, Department of Computer Systems, University of
Amsterdam, The Netherlands, 1994

[Wang 97] C.G. Wang. Object-oriented modeling for the operational control of water dis-
tribution system. In Proceedings of the International Conference on Computing
and Control for the Water Industry. September 1997.

[WAP 00] Wireless Application Protocol. White Paper, Wireless Internet Today, c© 2000
The WAPForum, All rights reserved, June 2000.

[WB 97] M.C. Wu and A.P. Buchmann. Research Issues in Data Warehousing, In Daten-
banksysteme in Buro, Technik und Wissenschaft BTW’97, pages 61-82, Ulm,
March 1997.

[WKL+98] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin Core Metadata for Re-
source Discovery. IETF #2413. The Internet Society, September 1998.

[WMP 98] R. Williams, R. Moore, and J.C.T. Pool, Workshop on Interfaces to scientific
data Archives. Technical Report CACR-160, Pasadena, California, March 1998.

[ZK 96] A. Zisman and J. Kramer. An architecture to support interoperability of au-
tonomous database systems. In Proceedings of the 2nd International Baltic
Workshop on DB and IS, Tallin-Estonia, June 1996.

Samenvatting*

De Informatieintegratie tussen Heterogene en Autonome
Computertoepassingen

Een grote verscheidenheid aan gedistribueerde computertoepassingen ontstaan tegenwoordig
op diverse gebieden. Deze toepassingen gebruiken hierbij verschillende database systemen
voor het beheren van hun informatie. De bron van deze verscheidenheid moet gezocht moet
in de specifieke eisen aan de informatiebeheer en de specifieke doelen die gezet zijn voor deze
toepassingen.

Bestaande toepassingen verschillen van elkaar in hun intrinsieke kenmerken en hun
vereiste eigenschappen . Bij intrinsieke kenmerken moet men bijvoorbeeld denken aan hun
architectuur (gedistribueerd of gecentraliseerd), omvang, complexiteit, en de soort infor-
matie die ze kunnen afhandelen. Hun eigenschappen hangen daarentegen af van de glob-
ale functionaliteit die ze moeten bieden en de mogelijkheden tot samenwerken met andere
omgevingen. De huidige Database Management Systemen (DBMSs) zijn hoogstens gekozen
om te voldoen aan de kenmerken en eigenschappen van één toepassing. Echter, de huidige
generatie DBMSs missen de mogelijkheid om efficiënt toegepast te worden voor alle mogeli-
jke soorten toepassingen. Sommige DBMSs zijn beter in kleine toepassingen, andere zijn
juist gespecialiseerd in complexe omgevingen en zijn dan ook gericht op, bijvoorbeeld, mul-
timedia of grote datasets. Kortom, elke poging om echt verschillende computertoepassingen
te dwingen tot het gebruik van hetzelfde database systeem voor het complete beheer van al
hun informatie is onrealistisch. Zelfs in een homogene omgeving, voor sommige complexe
toepassingen, kan het gebruik van meerdere database systemen niet worden voorkomen.

Verder moet men voor de huidige organisaties, hetgeen wel duidelijk is geworden uit
de drie praktijkbeschrijvingen in dit proefschrift, er vanuit gaan dat zowel voor nieuwe als
reeds bestaande toepassingen men toegang moet houden tot de data verschillende oudere
databases op verscheidene locaties. Daarom is het voor complexe organisaties de mogelijkhe-
den tot samenwerken en integratie mechanismen tussen heterogene en autonome database
systemen het criterium waar op geselecteerd wordt. In de praktijk hebben we ook geleerd
dat juist het bieden van deze interoperabiliteit en informatieintegratie tussen gedistribueerde
systemen, met behulp van database standaarden en opkomende Internet technieken, een van
de meest uitdagende taken is binnen het kade van integratie van heterogene informatie van
autonome omgevingen.

Om deze nieuwe wensen van geavanceerde en complexe organisaties met betrekking tot
informatiebeheer te kunnen vervullen, moet een sterk informatieintegratie systeem worden
ontworpen en ontwikkeld.

*Vertaling door Arnoud Visser, Philip Jonkergouw, en Zeger Hendrikse

179

180 Samenvatting

Daartoe is in dit proefschrift een aanvang genomen in het ontwerpen en gedeeltelijk
ontwikkelen van een Generiek en Flexibel Informatieintegratie Systeem (GFI2S). Het on-
twerp van GFI2S is gebaseerd op het bestuderen, evalueren en valideren van de methoden
en technieken beschreven in hoofstuk 2, en gemotiveerd door de ervaring opgedaan met de
ontwikkelingen voor verscheidene onderzoeksprojecten zoals benoemd in hoofdstuk 3, 4 en
5 van dit proefschrift. De flexibiliteit van GFI2S schuilt in het kenmerk dat met minimale
inspanning een systeem resp. aan een federatie toe te voegen is of uit een federatie te verwi-
jderen is, hetgeen ondersteund wordt door het gebruik van een specifieke twee componenten
architectuur. Het generieke karakter wordt gewaarborgd door de toepassing van database
standaarden, opkomende Internet technieken en ‘middleware’ oplossingen.

Het werk beschreven in hoofdstuk 6 illustreert de architectuur componenten van GFI2S
die de integratie van verschillende datasoorten van heterogene toepassingen ondersteunen.
De architectuur van GFI2S is gebaseerd op twee componenten: ten eerste een ‘Local Adap-
tion Layer’ (LAL) die de toegang tot lokale databases vergemakkelijkt, en, ten tweede, een
‘Node Federation Layer’ (NFL) die verwijzingen levert naar de informatie en toepassingen
buiten deze computer, en ondersteuning bied voor informatie uitwisseling. De twee com-
ponenten architectuur van GFI2S ondersteunt een grote verscheidenheid aan bestaande
toepassingen met efficiënte methoden voor het samenvoegen en samen laten werken van hun
informatiebronnen, met behoud van de heterogeniteit, de distributie, en autonomie
van de bronnen.

• Heterogeniteit staat voor het feit dat iedere database zijn eigen DBMS kan ge-
bruiken, en dat de data representatie heterogeen is in termen van structuren en se-
mantiek voor elke omgeving.

• Distributie staat voor het opslaan en verwerken van informatie van verscheidene
bronnen, gesitueerd op verschillende computers.

• Autonomie staat voor het feit dat iedere database in de federatie onafhankelijk is.
In de meeste gevallen bestond de database al voor de federatie gevormd werd, en heeft
het zijn eigen gebruikersgemeenschap en administratieve procedures.

De onderscheidende eigenschappen van de GFI2S methode zijn samen te vatten in: (a)
de specifieke combinatie van database standaarden en Internet ‘middleware’ met funda-
mentele onderzoeksrichtingen, en (b) de manier waarin deze toegepast en gekoppeld
binnen de specifieke componenten van GFI2S. Deze twee overwegingen maken de GFI2S
methode te onderscheiden van alle andere bestaande federatie / integratie methoden, en po-
sitioneren GFI2S als een generieke oplossing gebaseerd op een flexibele architectuur, en een
open faciliteit voor de samenvoeging en samenwerking tussen heterogene, gedistribueerde en
autonome omgevingen.

Abstract

Information Integration among Heterogeneous and Au-
tonomous Applications

A wide variety of distributed applications are nowadays emerging in diverse domains. These
applications deploy various database systems for the management of their information, in
which the diversity stems from the specific information management requirements and the
objectives targeted by these applications.

Existing applications differ in their main characteristics and required features. On one
hand, they differ in their distributed/centralized architecture, their size, complexity, and
the type of data they handle. On the other hand, their requirements depend on the global
functionalities that they need to provide and on the required level of interoperation with
other sites. The used database management systems (DBMSs) are at best chosen to meet
the specific characteristics and requirements of every application environment. However,
currently available DBMSs lack the possibility to be efficiently used for all types of appli-
cations. Some DBMSs better suit smaller applications, while others are more dedicated to
complex environments and focus on the management of, for example, multimedia informa-
tion and large data sets. Thus, any attempt in the direction of forcing different applications
to use the same database system for the management of all their information services is
unrealistic. Even within the same environment, in certain complex applications, the use of
more than one DBMS cannot be avoided.

Furthermore, from the application cases described in the thesis, it is clear that in today’s
organizations, new and existing applications require access to data stored in several pre-
existing databases detained at several local and remote sites. Therefore, a main criterion
required by most complex organizations, is the provision of collaboration possibilities and
information integration mechanisms among distributed, heterogeneous, and autonomous
systems. We also learned from the development of the application cases that providing
interoperability and information integration among distributed systems, via the deployment
of database standards and emerging Internet technologies, is one of the most challenging
approaches in the area of integrating heterogeneous information from autonomous sites.

In Order to satisfy the new information management requirements of advanced and com-
plex organizations, a strong information integration system must be designed and developed,
serving the need for information integration and interoperation among these organizations.

In this context, the work described in this thesis focuses on the design and partial devel-
opment of a Generic and Flexible Information Integration System (GFI2S). The design of
GFI2S is based on the investigation, evaluation, and validation of the methodologies and
approaches discussed in chapter 2; and motivated by the expertise gained within the devel-

181

182 Abstract

opment of the various R&D projects addressed in chapters 3, 4, and 5 of the dissertation.
Flexibility of GFI2S resides in its ability to add/remove new system to/from the federation
with involvement of minimum effort. Flexibility in GFI2S is supported through the use of
the specific two-component architecture, while, its genericness is achieved through the de-
ployment of database standards, emerging Internet technologies, and middleware solutions.

The work described in chapter 6 illustrates the architectural components of GFI2S that
support the integration of different types of data from heterogeneous applications. The ar-
chitecture of GFI2S is composed of two main components of: (1) Local Adaptation Layer
(LAL) that facilitates the access to the underlying databases in the node, and (2) Node Fed-
eration Layer (NFL) that provides links to the information and applications outside the node
and supports the information sharing and interoperation. This two-component architecture
of GFI2S supports a wide variety of existing applications with efficient means for their in-
terconnection and interoperation, while preserving their heterogeneity , distribution , and
full autonomy .

• Heterogeneity refers to the fact that each database may apply its own distinct DBMS,
and data representation is heterogeneous in terms of structures and semantics at every
site.

• Distribution refers to the storage and processing of information from distributed
data sources, located on different host computers.

• Autonomy refers to the fact that each database within the federation community
is an independent database system. Typically, a local database is pre-existing to the
creation of a cooperation network and has its own administration policies, and users
community.

The distinctive features of the GFI2S integration approach resides in: (a) the spe-
cific combination of database standards and Internet middleware with the fundamental
research approaches, and (b) the way in which they are deployed and inter-linked
within the specific components of the GFI2S. These two considerations make the GFI2S
approach distinct from all other existing federated/integrated approaches, and introduce
GFI2S as a generic solution providing a flexible architecture, and an open facility for inte-
gration/interoperation among heterogeneous, distributed, and autonomous sites.

Résumé

L’intégration de l’Information entre des Applications
Heterogènes et Autonomes

Une grande variété d’applications réparties émergent de nos jours dans des domaines divers.
Ces applications déploient divers systèmes de base de données pour la gestion de leur infor-
mation, dont la diversité provient des contraintes spécifiques de la gestion de l’information
et des objectifs à atteindre.

Certaines applications diffèrent dans leurs caractéristiques principales et des func-
tionalités exigées. Entre autre, ces applications diffèrent dans leur architecture (dis-
tribuetée/centralisée), leur taille, leur complexité, et le type de données qu’elles manip-
ulent. Leurs besoins sont définis par les fonctionnalités globales qu’elles doivent fournir
et du niveau exigé d’interoperation avec d’autre sites géographiquement distribués. Les
Systèmes de Gestion de Base de Données utilisés (SGBDs) sont choisis pour répondre aux
caractéristiques et aux contraintes spécifiques de chaque application. Malheureusement, les
SGBDs disponible actuellement n’offrent pas la possibilité de les adapter efficacement pour
tout type d’applications. Certains SGBDs s’adaptent mieux aux petites applications, alors
que d’autres ont été spécialement conçu pour les applications complexes ; et par conséquent
sont plus adaptés à la gestion de l’information multimedia et aux données de grandes tailles.
Ainsi, toute tentative dans la direction de contraindre différentes applications à utiliser le
même système de gestion de base de données pour gérer tous leurs services d’information
est peu réaliste. Même dans le cadre d’un même environnement, il arrive souvent que l’on
soit amené à utiliser plusieurs systèmes de gestion de bases de données.

Il est clair d’après les études faites sur les applications, déscrites dans la presente thèse,
que les nouvelles applications exigent l’accès à des données stockées dans plusieurs bases de
données préexistantes, détenues à plusieurs emplacements géographiquement distribués et
distantes. Par conséquent, un des critères principaux exigé par la plupart des systèmes com-
plexes, est d’avoir la possibilités à la collaboration et de fournir des mécanismes d’intégration
de l’information entre les systèmes répartis, hétérogènes, et autonomes. Il s’est avérer d’après
les études faites sur des applications réelles que le développement des systèmes permuttant
l’interoperabilité et l’intégration des données entre des systèmes réparties et autonomes est
loin d’être trivial. Nous avons également appris du développement de ces applications que
fournir l’intégration de l’information et l’interopérabilité entre les systèmes répartis, par
l’intermédiaire du déploiement des base de données standards et des nouvelles technologies
d’Internet, est l’une des approches les plus prometeuse dans le domaine d’intégration de
l’information hétérogènes entre des sites autonomes. Afin de répondre aux nouvelles con-
traintes de gestion de l’information dans des systèmes avançés et complexes, un système

183

184 Résumé

robuste d’intégration de l’information doit être conçu et développé, servant les besoins
d’intégration de l’information et d’interoperation entre ces organismes.

Dans ce contexte, le travail décrit dans cette thèse est dedié à la conception et au
développement d’un Système Générique et Flexible d’Intégration de l’Information. La con-
ception de GFI2S est basée sur la recherche, l’évaluation, et la validation des méthodologies
et approches discutées dans le chapitre 2. En plus, le développement de GFI2S est mo-
tivé par l’expertise acquise lors du développement des divers projets de R&D adressés en
chapitres 3, 4, et 5 de la présente thèse. La flexibilité de GFI2S réside dans sa capacité
à ajouter/enlever un nouveau système à/de la fédération avec le minimum d’effort. La
flexibilité dans GFI2S est obtenue grâce à l’utilisation de l’architecture spécifique de deux-
composants, alors que, sa Généricité est assurée par le déploiement des base de données
standards et des nouvelles technologies de l’Internet.

Le travail décrit dans le chapitre 6 illustre les composants du système GFI2S qui per-
mettent l’intégration de différents types de données entre des applications hétérogènes.
L’architecture de GFI2S est constituée de deux composants principaux : (1) la couche
locale d’adaptation qui facilite l’accès aux sources de données dans les nœuds locaux, et (2)
la couche de fédération de noeuds qui fournit des liens à l’information et aux applications
externes et supporte le partage d’information et d’interoperation. L’architecture de GFI2S
permet l’integration d’une grande variété d’applications existantes avec des moyens efficaces,
tout en préservant leur hétérogénéité, distribution, et pleine autonomie.

• l’hétérogénéité vient du fait que chaque application peut appliquer son propre système
de gestion de bases de données, et sa propre représentation de données hétérogènes en
terme de structures et de sémantique.

• la distribution est liée au stockage et au traitement d’information sur des sources de
données distribués, situées sur différents sites géographiquement distribués.

• l’autonomie est liée au fait que chaque base de données au niveau de chaque nœud de la
fédération est un système indépendant. Typiquement, une base de données locale est
préexistante à la création d’un réseau de coopération et possédant sa propre politique
d’administration, et ses groupes d’utilisateurs.

Les fonctionalités principales de l’approche d’intégration de l’information de GFI2S
résident dans: (a) la combinaison spécifique des base de données standards et des nouvelles
technologies d’Internet avec les approches fondamentales de recherches, et (b) le moyen par
lequel elles sont déployés et liés aux éléments spécifiques du GFI2S. Ces deux fontionalités
rendent l’approche de GFI2S distincte de toutes autres approches existantes de federa-
tion/integration, et présentent GFI2S comme une solution générique fournissant une archi-
tecture flexible et évolutive pour l’integration de l’information et l’interoperation entre des
sites hétérogènes, distribués et autonomes.

